Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels
Corresponding Author
Arran Fernandez
Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, via Mersin-10 Northern Cyprus, Turkey
Correspondence
Arran Fernandez, Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, via Mersin-10, Turkey.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorPshtiwan Mohammed
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
Search for more papers by this authorCorresponding Author
Arran Fernandez
Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, via Mersin-10 Northern Cyprus, Turkey
Correspondence
Arran Fernandez, Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, via Mersin-10, Turkey.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorPshtiwan Mohammed
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
Search for more papers by this authorAbstract
We consider the Hermite-Hadamard inequality and related results on integral inequalities, in the context of fractional integrals and derivatives defined using Mittag-Leffler kernels, specifically the Atangana-Baleanu and Prabhakar models of fractional calculus.
Conflict of interest
There are no conflicts of interest to declare.
References
- 1Lakshmikantham V, Leela S. Differential and Integral Inequalities: Theory and Applications Ordinary Differential Equations, Vol. I. New York:Academic Press; 1969.
- 2Walter W. Differential and Integral Inequalities (Vol. 55). Springer Science & Business Media 2012 [orig. ed in German; Springer Tracts in Natural Philosophy; 1964.
- 3Agarwal P, Tariboon J, Ntouyas SK. Some generalized Riemann-Liouville -fractional integral inequalities. J Inequalities Appl. 2016; 2016: 122.
- 4Anastassiou GA. Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications. Math Comput Model. 2008; 48: 344-374.
- 5Denton Z, Vatsala AS. Fractional integral inequalities and applications. Comput Math Appl. 2010; 59(3): 1087-1094.
- 6Sarikaya MZ, Filiz H, Kiris ME. On some generalized integral inequalities for Riemann–Liouville fractional integrals. Filomat. 2015; 29(6): 1307-1314.
- 7Zhu C, Feckan M, Wang J. Fractional integral inequalities for differential convex mappings and applications to special means and a midpoint formula. J Appl Math, Stat Inform. 2012; 8(2): 21-28.
10.2478/v10294-012-0011-5 Google Scholar
- 8Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:Wiley; 1993.
- 9Oldham KB, Spanier J. The Fractional Calculus. San Diego:Academic Press; 1974.
- 10Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives: Theory and Applications, Taylor & Francis, London, 2002. Nauka i Tekhnika Minsk; 1987.
- 11Caputo M. Linear model of dissipation whose q is almost frequency independent - II. Geophys J Int. 1967; 13: 529-539.
- 12Hilfer R. Applications of Fractional Calculus in Physics. New Jersey:World Scientific; 2000.
10.1142/3779 Google Scholar
- 13Atangana A. Fractional Operators with Constant and Variable Order with Application to Geo-hydrology. New York:Academic Press; 2017.
- 14Hristov J. The Craft of Fractional Modelling in Science and Engineering. Basel:MDPI; 2018.
- 15Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier; 2006.
10.1016/S0304-0208(06)80001-0 Google Scholar
- 16Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV. Mittag-Leffler Functions, Related Topics and Applications. Berlin:Springer; 2014.
10.1007/978-3-662-43930-2 Google Scholar
- 17Haubold HJ, Mathai AM, Saxena RK. Mittag-Leffler functions and their applications. J Appl Math. 2011; 2011: 298628.
- 18Mathai AM, Haubold HJ. Mittag-Leffler functions and fractional calculus. Special Functions for Applied Scientists. 2008; 2008: 79-134.
10.1007/978-0-387-75894-7_2 Google Scholar
- 19Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci. 2016; 20(2): 763-769.
- 20Fernandez A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun Nonlinear Sci Numer Simul. 2018; 59: 444-462.
- 21Fernandez A. A complex analysis approach to Atangana-Baleanu fractional calculus. Math Methods Appl Sci. 2019: 1-18.
- 22Kilbas AA, Saigo M, Saxena RK. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr Transforms Spec Funct. 2004; 15(1): 31-49.
- 23Prabhakar TR. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math J. 1971; 19: 7-15.
- 24Abdeljawad T, Baleanu D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J Nonlinear Sci Appl. 2017; 10(3): 1098-1107.
- 25Djida J-D, Atangana A, Area I. Numerical computation of a fractional derivative with non-local and non-singular kernel. Math Model Nat Phenom. 2017; 12(3): 4-13.
- 26Fernandez A, Baleanu D. The mean value theorem and Taylor's theorem for fractional derivatives with Mittag-Leffler kernel. Adv Differ Equ. 2018; 2018: 86.
- 27Fernandez A, Baleanu D, Srivastava HM. Series representations for models of fractional calculus involving generalised Mittag-Leffler functions. Commun Nonlinear Sci Numer Simul. 2019; 67: 517-527.
- 28Garra R, Garrappa R. The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun Nonlinear Sci Numer Simul. 2018; 56: 314-329.
- 29Uçar S, Uçar E, Özdemir N, Hammouch Z. Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative. Chaos, Solitons Fractals. 2019; 118: 300-306.
- 30Gómez-Aguilar J, Morales-Delgado V, Taneco-Hernández M, Baleanu D, Escobar-Jiménez R, Al Qurashi M. Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels. Entropy. 2016; 18(8): 402.
- 31Jajarmi A, Arshad S, Baleanu D. A new fractional modelling and control strategy for the outbreak of dengue fever. Physica A: Stat Mech Appl. 2019; 535: 122524.
- 32Saad KM. Comparing the Caputo, Caputo–Fabrizio and Atangana–Baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system. The Eur Phys J Plus. 2018; 133(3): 94.
- 33Sarikaya MZ, Set E, Yaldiz H, Başak N. Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities. Math Comput Model. 2013; 57: 2403-2407.
10.1016/j.mcm.2011.12.048 Google Scholar
- 34Dragomir SS, Bhatti MI, Iqbal M, Muddassar M. Some new Hermite-Hadamard's type fractional integral inequalities. J Comput Anal Appl. 2015; 18(4): 655-661.
- 35Kavurmaci H, Avci M, Ozdemir ME. New inequalities of Hermite-Hadamard type for convex functions with applications. J Inequalities Appl. 2011; 2011: 86.
- 36Mohammed PO. Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions. Turk J Anal Num Th. 2016; 4(5): 135-139.
- 37Liu K, Wang J, O'Regan D. On the Hermite–Hadamard type inequality for -Riemann–Liouville fractional integrals via convex functions. J Inequalities Appl. 2019; 2019: 27.
- 38Basci Y, Baleanu D. Ostrowski Type inequalities involving -Hilfer fractional integrals. Mathematics. 2019; 7: 770.
- 39Pollard H. The completely monotonic character of the Mittag-Leffler function . Bull Am Math Soc. 1948; 54(12): 1115-1116.
- 40Sarikaya MZ, Yildirim H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math Notes. 2017; 17(2): 1049-1059.
- 41Mehrez K, Agarwal P. New Hermite-Hadamard type integral inequalities for convex functions and their applications. J Comput Appl Math. 2019; 350: 274-285.