Numerical solutions of random mean square Fisher-KPP models with advection
Corresponding Author
María Consuelo Casabán
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
Correspondence
M. C. Casabán, Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
Email: [email protected]
Communicatedby: J. R. Torregrosa
Search for more papers by this authorRafael Company
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
Search for more papers by this authorLucas Jódar
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
Search for more papers by this authorCorresponding Author
María Consuelo Casabán
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
Correspondence
M. C. Casabán, Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
Email: [email protected]
Communicatedby: J. R. Torregrosa
Search for more papers by this authorRafael Company
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
Search for more papers by this authorLucas Jódar
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
Search for more papers by this authorAbstract
This paper deals with the construction of numerical stable solutions of random mean square Fisher-Kolmogorov-Petrosky-Piskunov (Fisher-KPP) models with advection. The construction of the numerical scheme is performed in two stages. Firstly, a semidiscretization technique transforms the original continuous problem into a nonlinear inhomogeneous system of random differential equations. Then, by extending to the random framework, the ideas of the exponential time differencing method, a full vector discretization of the problem addresses to a random vector difference scheme. A sample approach of the random vector difference scheme, the use of properties of Metzler matrices and the logarithmic norm allow the proof of stability of the numerical solutions in the mean square sense. In spite of the computational complexity, the results are illustrated by comparing the results with a test problem where the exact solution is known.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interests regarding the publication of this article.
REFERENCES
- 1Fisher RA. The wave of advance of advantageous genes. Ann Eugenics. 1937; 7: 335-369.
10.1111/j.1469-1809.1937.tb02153.x Google Scholar
- 2Malchow H, Petrovskii SV, Venturino E. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Simulations, CRC Mathematical and Computational Biology Series. Boca Raton:CRC Press; 2008.
- 3Bengfort M, Malchow H, Hilker FM. The Fokker-Planck law of diffusion and pattern formation in heterogeneous environments. J Math Biol. 2016; 73: 683-704.
- 4Okubo A, Levin SA. Diffusion and Ecological Problems: Modern Perspectives Interdisciplinary Applied Mathematics. 2nd ed., Vol. 14. New York:Springer; 2001.
10.1007/978-1-4757-4978-6 Google Scholar
- 5Kolmogorov A, Petrovsky N, Piskunov S. Étude de l'équations de la diffusion avec croissance de la quantit é de matière et son application a un problème biologique. Bull Univ Moskou. 1937; 1. English translation in Dynamics of Curved Fronts, P. Pelc é (ed.), Academic Press, 1988, pp. 105–130.
- 6Skellam JG. Random dispersal in theoretical populations. Biometrika. 1951; 38: 196-218.
- 7Aronson DG, Weinberger HF. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial Differential Equations and Related Topics, Lectures Notes in Math., vol. 446. Berlin:Springer; 1975: 5-49.
10.1007/BFb0070595 Google Scholar
- 8Aronson DG, Weinberger HF. Multidimensional nonlinear diffusions arising in population genetics. Adv Math. 1978; 30: 33-76.
- 9Shigesada N, Kawasaki K. Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution. Oxford:Oxford University Press Inc; 1997.
10.1093/oso/9780198548522.001.0001 Google Scholar
- 10Weinberger HF. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol. 2002; 45: 511-548.
- 11Weinberger HF, Lewis MA, Li B. Anomalous spreading speeds of cooperative recursion systems. J Math Biol. 2007; 55: 207-222.
- 12Liang X, Zhao X-Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math. 2007; 60: 1-40.
- 13Bartlett MS. Deterministic and stochastic models for recurrent epidemics. Proc Third Berkeley Symp Math Stat Prob. 1956; 4: 81-109.
- 14Fitzgibbon WE, Parrott ME, Webb WF. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete Cont Dyn Syst. 1995; 1: 35-57.
10.3934/dcds.1995.1.35 Google Scholar
- 15Kinezaki N, Kawasaki K, Shigesada N. Spatial dynamics of invasion in sinusoidally varying environments. Popul Ecol. 2006; 48(4): 263-270.
- 16Jin Y, Hilker FM, Steffler PM, Lewis MA. Seasonal invasion dynamics in a spatially heterogeneous river with fluctuating flows. Bull Math Biol. 2014; 76(7): 1522-1565.
- 17Faou E. Analysis of splitting methods for reaction-diffusion problems using stochastic calculus. Math Comput. 2009; 78(267): 1467-1483.
- 18Doering CR, Mueller C, Smereka P. Interacting particles, the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality. Physica A. 2003; 325: 243-259.
- 19Siekmann I, Bengfort M, Malchow H. Coexistence of competitors mediated by nonlinear noise. Eur Phys J Spec Top. 2017; 226(9): 2157-2170.
- 20McKean HP. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piscunov. Commun Pure Appl Maths. 1975; 28: 323-331.
- 21Berestycki H, Nadin G. Spreading speeds for one-dimensional monostable reaction–diffusion equations. J Math Phys. 2012; 53(11): 115619.
- 22Nadin G. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms? Discrete and Continuous Dynamical Systems-Series B. Amer Inst Math Sci. 2015; 20(6): 1785-1803.
- 23Cortés JC, Jódar L, Villafuerte L, Villanueva RJ. Computing mean square approximations of random diffusion models with source term. Math Comput Simulat. 2007; 76: 44-48.
- 24Villafuerte L, Braumann CA, Cortés J-C, Jódar L. Random differential operational calculus: theory and applications. Comput Math Appl. 2010; 59(1): 115-125.
- 25Casabán M-C, Cortés J-C, Jódar L. Solving linear and equations quadratic random matrix differential: A mean square approach. Appl Math Model. 2016; 40(21-22): 9362-9377.
- 26Soong TT. Random Differential Equations in Science and Engineering. New York:Academic Press; 1973.
- 27Sarmin EN, Chudov LA. On the stability of the numerical integration of systems of ordinary differential equations arising in the use of the straight line method. USSR Comput Math Math Phys. 1963; 3(6): 1537-1543.
10.1016/0041-5553(63)90256-8 Google Scholar
- 28Sanz-Serna JM. Convergence analysis of one-step schemes in the method of lines. Appl Math Comput. 1989; 31: 183-196.
- 29Calvo MP, de Frutos J, Novo J. Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations. Appl Numer Math. 2001; 37: 535-549.
- 30Cox SM, Matthews PC. Exponential time differencing for stiff systems. J Comput Phys. 2002; 176(2): 430-455.
- 31de la Hoz F, Vadillo F. Numerical simulations of time-dependent partial differential equations. J Comput Appl Math. 2016; 295(15): 175-184.
- 32Company R, Egorova VN, Jódar L. Conditional full stability of positivity-preserving finite difference scheme for diffusion-advection-reaction models. J Comput Appl Math. 2018; 341: 157-168.
- 33Kaczorek T. Positive 1D and 2D Systems. London:Springer; 2002.
10.1007/978-1-4471-0221-2 Google Scholar
- 34Golub GH, Van Loan CF. Matrix Computations. Third edition. USA:The Johns Hopkins University Press; 1996.
- 35Dosoer CA, Vidyasagar M. Feedback Systems: Input-output Properties, CA Dosoer, ed. New York:Academic Press; 1975.
- 36Dahlquist G. Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations. Stockholm: Almqvist & Wiksells; 1958.
- 37Cox SM, Matthews PC. Exponential time differencing for stiff systems. J Comput Phys. 2002; 176: 430-455.
- 38Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York:Springer-Verlag; 1983.
10.1007/978-1-4612-5561-1 Google Scholar
- 39Atkinson KE. An Introduction to Numerical Analysis. New York:John Wiley Sons Inc.; 1989.
- 40Polyanin AD, Zaitsev VF. Handbook of Nonlinear Partial Differential Equations. New York:Chapman & Hall; 2004.
Citing Literature
Special Issue:Mathematical Modelling in Engineering & Human Behaviour 2018
30 September 2020
Pages 8015-8031