Volume 43, Issue 14 pp. 8015-8031
SPECIAL ISSUE PAPER

Numerical solutions of random mean square Fisher-KPP models with advection

María Consuelo Casabán

Corresponding Author

María Consuelo Casabán

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain

Correspondence

M. C. Casabán, Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

Email: [email protected]

Communicatedby: J. R. Torregrosa

Search for more papers by this author
Rafael Company

Rafael Company

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain

Search for more papers by this author
Lucas Jódar

Lucas Jódar

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain

Search for more papers by this author
First published: 06 November 2019
Citations: 4

Abstract

This paper deals with the construction of numerical stable solutions of random mean square Fisher-Kolmogorov-Petrosky-Piskunov (Fisher-KPP) models with advection. The construction of the numerical scheme is performed in two stages. Firstly, a semidiscretization technique transforms the original continuous problem into a nonlinear inhomogeneous system of random differential equations. Then, by extending to the random framework, the ideas of the exponential time differencing method, a full vector discretization of the problem addresses to a random vector difference scheme. A sample approach of the random vector difference scheme, the use of properties of Metzler matrices and the logarithmic norm allow the proof of stability of the numerical solutions in the mean square sense. In spite of the computational complexity, the results are illustrated by comparing the results with a test problem where the exact solution is known.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.