The semi-analytical method for time-dependent wave problems with uncertainties
Corresponding Author
Maria Consuelo Casabán Bartual
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Correspondence
Maria Consuelo Casabán Bartual, Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain,
Email: [email protected]
Communicated by: J. R. Torregrosa
Search for more papers by this authorJuan Carlos Cortés López
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorLucas Jódar Sánchez
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorCorresponding Author
Maria Consuelo Casabán Bartual
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Correspondence
Maria Consuelo Casabán Bartual, Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain,
Email: [email protected]
Communicated by: J. R. Torregrosa
Search for more papers by this authorJuan Carlos Cortés López
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorLucas Jódar Sánchez
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorAbstract
This paper provides a constructive procedure for the computation of approximate solutions of random time-dependent hyperbolic mean square partial differential problems. Based on the theoretical representation of the solution as an infinite random improper integral, obtained via the random Fourier transform method, a double approximation process is implemented. Firstly, a random Gauss-Hermite quadrature is applied, and then, the evaluations at the nodes of the integrand are approximated by using a random Störmer numerical method. Numerical results are illustrated with examples.
REFERENCES
- 1Farlow SJ. Partial Differential Equations for Scientists and Engineers. New York:Dover; 1993.
- 2Myint-U T, Debnath L. Partial Differential Equations for Scientists and Engineers. New York:North-Holland; 1987.
- 3Jódar L, Pérez J. Analytic numerical solutions with a priori error bounds of initial value problems for the time dependent coefficient wave equation. Util. Math. 2002; 62: 95–115.
- 4Khan Y, Austin F. Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations. Zeitschrift fuer Naturforschung. 2010; 65: 1–5.
- 5Khan Y, Taghipour R, Falahian M, Nikkar A. A new approach to modified regularized long wave equation. Neural Comput. and Applic. 2013; 23(5): 1335–1341.
- 6Ji Lin CS, Jun L.. Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions. Comp. Math. Appli. 2016; 72(3): 555–567.
- 7Ji Lin C, Zhang L, Sun JL. Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method. Adv. Appl. Math. Mech. 2018; 10(2): 322–342.
- 8Ji Lin SY, Reutskiy JL. A novel meshless method for fully nonlinear advection-diffusion-reaction problems to model transfer in anisotropic media. Appl. Math. Comput. 2018; 339: 459–476.
- 9Sólnes J.. Processes, and Random Vibrations. Baffins Lane, Chichester, England:John Wiley and Sons; 1997.
- 10Kachanov LM. Introduction to Continuous Damage Mechanics:Martinus Nijhoff Dordrecht; 1986.
- 11Lomnitz C.. Global Tectonics and Earthquake Risk, Developments of Geotecnics. Amsterdam:Elsevier; 1974.
- 12Harvey AF. Microwave Engineering. New York:Academic Press; 1963.
- 13Sheng D, Axelsson K. Uncoupling of coupled flows in soil. A finite element method. Int. J. Numer. Anal. Meth. Geomechanics. 1995; 19: 537–553.
- 14Yeung AT, Mitchell JK. Coupled fluid, electrical and chemical flows in soil. Géotechnique. 1993; 43(1): 121–134.
- 15Winfree AT. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Princeton NJ:Princeton University Press; 1987.
- 16Das P. K.. Optical Signal Processing:New York; 1991.
10.1007/978-3-642-74962-9 Google Scholar
- 17Bertram JE, Sarachik PE. Stability of circuits with random time varying parameters. IRE Trans. PGIT Special Suppl. 1959; 5: 260–270.
- 18Pozar DM. Microwave Engineering. 2nd edition. New York:John Wiley and Sons, Inc; 1998.
- 19Dibben DC, Metaxas R. Time domain finite element analysis of multimode microwave applicators. IEEE Trans. Magn. 1996; 32(3): 942–945.
- 20Metaxas AC, Meredith RJ. Industrial Microwave Heating:Peter Peregrinus, London; 1983.
- 21Roussy G, Pearcy JA. Foundations of Industrial Applications of Microwave and Radio Frequency Fields. New York:John Wiley; 1995.
- 22Bharucha-Reid AT. On the theory of random equations. Richard Bellman, Stochastic Processes in Mathematical Physics and Engineering: 40–69. Proceedings of symposia in applied mathematics, 0160-7634, American Mathematical Society, USA. 1964; XVI:.
- 23Bharucha-Reid AT. Probabilistic Methods in Applied Mathematics, Volumes 1, 2 and 3. New York:Academic Press; 1973.
- 24Cortés J-C, Jódar L, Roselló M-D, Villafuerte L, Solving initial and two-point boundary value linear random differential equations: a mean square approach. Appl. Math. Comput. 2012; 219(4): 2204–2211.
- 25Casabán M-C, Company R, Cortés J-C, Jódar L. Solving the random diffusion model in an infinite medium: a mean square approach. Appl. Math. Model. 2014; 38(24): 5922–5933.
- 26Casabán M-C, Cortés J-C, Jódar L, Solving linear and quadratic random matrix differential equations. A mean square approach. Appl. Math. Model. 2016; 40(21–22): 9362–9377.
- 27Casabán M-C, Cortés J-C, Jódar L. Solving linear and quadratic random matrix differential equations using: a mean square approach. The non-autonomous case. J. Comput. Appl. Math. 2018; 330: 937–954.
- 28Santos LT, Dorini FA, Cunha MCC. The probability density function to the random linear transport equation. Appl. Math. Comput. 2010; 216(5): 1524–1530.
- 29Hussein A, Selim M. Solution of the stochastic generalized shallow-water wave equation using RVT technique. M. Eur. Phys. J. Plus. 2015; 130(249): 1–11.
- 30Madera AG. Modelling of stochastic heat transfer in a solid. Appl. Math. Model. 1993; 17(12): 664–668.
- 31Madera AG, Sotnikov AN. Method for analyzing stochastic heat transfer in a fluid flow. Appl. Math. Model. 1996; 20(8): 588–592.
- 32Caraballo T, Han X, Kloeden PE. Chemostats with random inputs and wall growth. Math. Methods Appl. Sci. 2015; 38(16): 3538–3550.
- 33Soong TT. Random Differential Equations in Science and Engineering. New York:Academic Press; 1973.
- 34Arnold L. Stochastic Differential Equations: Theory and Applications. New York:Dover Publ; 2013.
- 35Villafuerte L, Braumann CA, Cortés J.-C., Jódar L.. Random differential operational calculus: theory and applications. Computers and Mathematics with Applications. 2010; 59(1): 115–125.
- 36Henrici P. Discrete variable methods in ordinary differential equations. New York:John Wiley and Sons, Inc; 1962.
- 37Davis PJ, Rabinowitz P. Computer Science and Applied Mathematics. second edition. San Diego:Academic Press, Inc; 1984.
- 38Delves LM, Mohamed JL. Computational Methods for Integral Equations. New York:Cambridge University Press; 1985.
10.1017/CBO9780511569609 Google Scholar
- 39Calbo G, Cortés J-C, Jódar L. Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 2010; 218(7): 3654–3666.
- 40Cortés J-C, Jódar L, Villafuerte L.. Numerical solution of random differential initial value problems: multistep methods. Math. Methods Appl. Sci. 2011; 34(1): 63–75.
- 41Brychkov YA, Glaeske H-J, Prudnikov AP, Kim Tuan V. Multidimensional Integral Transformations. Amsterdam:Gordon and Breach Science Publishers; 1992.
- 42Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc. New York:United States; 1972.
Citing Literature
Special Issue:Mathematical Modelling in Engineering & Human Behaviour 2018
30 September 2020
Pages 7977-7992