Volume 43, Issue 14 pp. 7977-7992
SPECIAL ISSUE PAPER

The semi-analytical method for time-dependent wave problems with uncertainties

Maria Consuelo Casabán Bartual

Corresponding Author

Maria Consuelo Casabán Bartual

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain

Correspondence

Maria Consuelo Casabán Bartual, Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain,

Email: [email protected]

Communicated by: J. R. Torregrosa

Search for more papers by this author
Juan Carlos Cortés López

Juan Carlos Cortés López

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain

Search for more papers by this author
Lucas Jódar Sánchez

Lucas Jódar Sánchez

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain

Search for more papers by this author
First published: 07 August 2019
Citations: 1

Abstract

This paper provides a constructive procedure for the computation of approximate solutions of random time-dependent hyperbolic mean square partial differential problems. Based on the theoretical representation of the solution as an infinite random improper integral, obtained via the random Fourier transform method, a double approximation process is implemented. Firstly, a random Gauss-Hermite quadrature is applied, and then, the evaluations at the nodes of the integrand are approximated by using a random Störmer numerical method. Numerical results are illustrated with examples.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.