On systems of fractional differential equations with the ψ-Caputo derivative and their applications
Ricardo Almeida
Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
Search for more papers by this authorAgnieszka B. Malinowska
Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland
Search for more papers by this authorCorresponding Author
Tatiana Odzijewicz
Department of Mathematics and Mathematical Economics, Warsaw School of Economics, 02-554 Warsaw, Poland
Correspondence
Tatiana Odzijewicz, Department of Mathematics and Mathematical Economics, Warsaw School of Economics, Al. Niepodległości 162, 02-554 Warsaw, Poland.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorRicardo Almeida
Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
Search for more papers by this authorAgnieszka B. Malinowska
Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland
Search for more papers by this authorCorresponding Author
Tatiana Odzijewicz
Department of Mathematics and Mathematical Economics, Warsaw School of Economics, 02-554 Warsaw, Poland
Correspondence
Tatiana Odzijewicz, Department of Mathematics and Mathematical Economics, Warsaw School of Economics, Al. Niepodległości 162, 02-554 Warsaw, Poland.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorAbstract
Systems of fractional differential equations with a general form of fractional derivative are considered. A unique continuous solution is derived using the Banach fixed point theorem. Additionally, the dependence of the solution on the fractional order and on the initial conditions are studied. Then the stability of autonomous linear fractional differential systems with order 0<α<1 of the ψ-Caputo derivative is investigated. Finally, an application of the theoretical results to the problem of the leader-follower consensus for fractional multi-agent systems is presented. Sufficient conditions are given to ensure that the tracking errors asymptotically converge to zero. The results of the paper are illustrated by some examples.
REFERENCES
- 1Diethelm K. The Analysis of Fractional Differential Equations. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2010. ISBN: 978-3-642-14574-2.
- 2Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science B.V.; 2006. ISBN: 9780080462073.
10.1016/S0304-0208(06)80001-0 Google Scholar
- 3Podlubny I. Fractional Differential Equations. San Diego: Elsevier; 1999. ISBN: 9780125588409.
- 4Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives. Yverdon: Gordon and Breach; 1993.
- 5Erturk VS, Momani S. Solving systems of fractional differential equations using differential transform method. J Comput Appl Math. 2008; 215: 142-151.
- 6Darzi R, Agheli B. An analytical approach for systems of fractional differential equations by means of the innovative homotopy perturbation method. Math Morav. 2018; 22: 93-105.
10.5937/MatMor1801093D Google Scholar
- 7Baleanu D, Machado JAT, Luo AC. Fractional Dynamics and Control. New York: Springer-Verlag New York; 2012. ISBN: 978-1-4614-0457-6.
10.1007/978-1-4614-0457-6 Google Scholar
- 8Girejko E, Mozyrska D, Wyrwas M. Behaviour of fractional discrete-time consensus models with delays for summator dynamics. Bull Pol Ac Tech. 2018; 66(4): 1-15.
- 9Guo S, Mei L, Li Y, Sun Y. The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys Lett A. 2012; 376: 407-411.
- 10Hermann R. Fractional Calculus: An Introduction for Physicists. Singapore: World Sci. Publishing; 2011. ISBN: 978-9814340243.
10.1142/8072 Google Scholar
- 11Kaplan T, Gray LJ, Liu SH. Self-affine fractal model for a metal-electrolyte interface. Phys Rev B. 1987; 35: 5379-5381.
- 12Khan NA, Ara A, Jamil M. Traveling waves solution of a micropolar fluid. Int J Nonlinear Sci Numer Simulat. 2009; 10(9): 1121-1125.
- 13Luo AJ, Afraimovich V. Long-Range Interactions, Stochasticity and Fractional Dynamics. New York, Dordrecht, Heidelberg, London,: Springer, New York, Dordrecht, Heidelberg, London; 2010. ISBN: 978-3-642-12342-9.
10.1007/978-3-642-12343-6 Google Scholar
- 14Meral FC, Royston TJ, Magin R. Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul. 2010; 15(4): 939-945.
- 15Oustaloup A. Systèmes Asservis Linéaires d'ordre Fractionnaire. Paris: Masson; 1983. ISBN: 9782225789700.
- 16Sahoo P, Berman T, Davim JP. Fractal Analysis in Machining. Springer, New York, Dordrecht, Heidelberg, London: Springer; 2011.
10.1007/978-3-642-17922-8 Google Scholar
- 17Sasso A, Palmieri G, Amodio D. Application of fractional derivative models in linear viscoelastic problems. Mech Time Depend Mater. 2011; 15(4): 367-387.
- 18Suárez JI, Vinagre BM, Calderón AJ, Monje CA, Chen YQ. Using fractional calculus for lateral and longitudinal control of autonomous vehicles, Computer Aided Systems Theory—EUROCAST 2003; 2004. ISBN 978-3-540-45210-2.
- 19Tarasov VE. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particle, Fields and Media. Berlin-Heidelberg: Springer-Verlag; 2010. ISBN 978-3-642-14003-7.
10.1007/978-3-642-14003-7 Google Scholar
- 20Wyrwas M, Girejko E, Mozyrska D. Fractional discrete-time consensus models for single- and double-summator dynamics. Int J Syst Sci. 2018; 49(6): 1212-1225.
- 21Sun HG, Zhang Y, Baleanu D, Chen W, Chen YQ. A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simulat. 2018; 64: 213-231.
- 22Jarad F, Abdeljawad T, Baleanu D. Caputo-type modification of the Hadamard fractional derivatives. Adv Differ Equ. 2012; 2012:142. https://doi.org/10.1186/1687-1847-2012-142
- 23Luchko Y, Trujillo JJ. Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract Calc Appl Anal. 2007; 10(3): 249-267.
- 24Kilbas AA. Hadamard-type fractional calculus. J Korean Math Soc. 2001; 38(6): 1191-1204.
- 25Almeida R. A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simulat. 2017; 44: 460-481.
- 26Almeida R, Malinowska AB, Monteiro MTT. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math Meth Appl Sci. 2018; 41(1): 336-352.
- 27Sousa JVC, Oliveira EC. On the ψ-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simulat. 2018; 60: 72-91.
- 28Voyiadjis GZ, Sumelka W. Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative. J Mech Behav Biomed Mater. 2019; 89: 209-216.
- 29Almeida R, Malinowska AB, Odzijewicz T. Optimal leader-follower control for the fractional opinion formation model. J Optim Theory Appl. 2018: 1-15. https://doi.org/10.1007/s10957-018-1363-9
- 30Bai J, Wen G, Rahmani A, Chu X, Yu Y. Consensus with a reference state for fractional-order multi-agent systems. Int J Syst Sci. 2015; 47(1): 222-234.
- 31Ren G, Yu Y, Zhang S. Leader-following consensus of fractional nonlinear multiagent systems. Math Prob Eng. 2015; 2015: 8. Article ID:919757.
- 32Yu Z, Jiangn H, Hu C. Leader-following consensus of fractional-order multi-agent systems under fixed topology. Neurocomputing. 2015; 149: 613-620.
- 33Zhang S, Yu Y, Wang H. Mittag-Leffter stability of fractional-order Hopfield neutral networks. Nonlinear Anal Hybrid Syst. 2015; 171(C): 104-121.
- 34Sousa JVC, Oliveira EC. A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differ Equ Appl. 2019; 11: 87-106.
- 35Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl. 2007; 328(2): 1075-1081.
- 36Odibat ZM. Analytic study on linear systems of fractional differential equations. Comput Math Appl. 2010; 59(3): 1171-1183.
- 37Cong ND, Doan TS, Siegmund S, Tuan HT. Linearized asymptotic stability for fractional differential equations. Electron J Qual Theory Differ Equ. 2016; 39: 1-13.
- 38Qian D, Li Ch, Agarwal RP, Wong PJW. Stability analysis of fractional systems with Remann-Liouville derivatives. Math Comput Model. 2010; 52(5-6): 862-874.
10.1016/j.mcm.2010.05.016 Google Scholar