Theoretical and spectral numerical study for fractional Van der Pol equation
Corresponding Author
Samer S. Ezz-Eldien
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
Correspondence
Samer S. Ezz-Eldien, Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorCorresponding Author
Samer S. Ezz-Eldien
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
Correspondence
Samer S. Ezz-Eldien, Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorAbstract
This manuscript concerns with both theoretical and numerical study for a generalized form of fractional Van der Pol equations (FVDPEs). The Schauder fixed point and Banach contraction mapping principles are used for investigating the existence and uniqueness of the considered problem. The second novelty of this manuscript is using the tau method for solving a nonlinear problem (specially FVDPE). The convergence analysis of the suggested approach is also studied. Comparisons with other numerical approaches are introduced for testing the applicability of the current approach.
CONFLICT OF INTEREST
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
REFERENCES
- 1Sebaa N, Fellah ZEA, Lauriks W, Depollierm C. Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Process. 2006; 86: 2668-2677.
- 2Bhrawy AB, Ezz-Eldien SS. A new Legendre operational technique for delay fractional optimal control problems. Calcolo. 2016; 53: 521-543.
- 3Zaky MA, Doha EH, Machado JT. Spectral framework for fractional variational problems based on fractional Jacobi functions. Appl Numer Math. 2018; 132: 51-72.
- 4Alcoutlabi M, Martinez-Vega JJ. Application of fractional calculus to vixcoelastic behavior modelling and to the physical ageing phenomena in glassy amorphous polymers. Polymer. 1998; 39: 6269-6277.
- 5Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity. London: Imperial College Press; 2010.
10.1142/p614 Google Scholar
- 6Ezz-Eldien SS, El-Kalaawy AA. Numerical simulation and convergence analysis of fractional optimization problems with right-sided Caputo fractional derivative. J Numerical Comput Nonlinear Dyn. 2018; 13: 11010 (8 pages).
- 7Kulish VV, Lage JL. Application of fractional calculus to fluid mechanics. J Fluids Eng. 2002; 124: 803-806.
- 8Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul. 2011; 16: 1140-1153.
- 9Ezz-Eldien SS, Hafez RM, Bhrawy AH, Baleanu D, El-Kalaawy AA. New numerical approach for fractional variational problems using shifted Legendre orthonormal polynomials. J Optim Theory Appl. 2017; 174: 295-320.
- 10Ortigueira MD. Fractional Calculus for Scientists and Engineers. New York: Springer; 2011.
10.1007/978-94-007-0747-4 Google Scholar
- 11Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier; 2006.
10.1016/S0304-0208(06)80001-0 Google Scholar
- 12Ezz-Eldien SS, Doha EH, Bhrawy AH, El-Kalaawy AA, Machado JT. New operational approach for solving fractional variational problems depending on indefinite integrals. Commun Nonlinear Sci Numer Simulat. 2018; 57: 246-263.
- 13Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific; 2000.
10.1142/3779 Google Scholar
- 14Liu F, Zhuang P, Turner I, Burrage K, Anh V. New fractional finite volume method for solving the fractional diffusion equation. Appl Math Model. 2014; 38: 3871-3878.
- 15Abdelkawy MA. A collocation method based on Jacobi and fractional order Jacobi basis functions for multi-dimensional distributed-order diffusion equations. Inter J Nonlinear Sci Numer Simul. 2019; 19(7–8): 781-792. https://doi.org/10.1515/ijnsns-2018-0111
- 16Burgos C, Calatayud J, Cortés J-C, Navarro-Quiles A. A full probabilistic solution of the random linear fractional differential equation via the random variable transformation technique. Math Meth Appl Sci. 2018; 41: 9037-9047.
- 17Zaky MA, Ezz-Eldien SS, Doha EH, Machado JAT, Bhrawy AH. An efficient operational matrix technique for multidimensional variable-order time fractional diffusion equations. J Comput Nonlinear Dynam. 2016; 11(6): 61002 (8 pages).
- 18Khodabakhshi N, Vaezpour SM, Baleanu D. Numerical solutions of the initial value problem for fractional differential equations by modification of the Adomian decomposition method. Frac Calc Appl Anal. 2014; 17: 382-400.
- 19Mandal H, Bira B, Zeidan D. Power series solution of time-fractional Majda-Biello system using lie group analysis. In: Proceedings of International Conference on Fractional Differentiation and its Applications (ICFDA); 2018; Amman, The Hashemite Kingdom of Jordan. https://doi.org/10.2139/ssrn.3284751, (6 pages).
- 20Li X, Wong PJY. An efficient nonpolynomial spline method for distributed order fractional subdiffusion equations. Math Meth Appl Sci. 2018; 41: 4906-4922.
- 21Doha EH, Abdelkawy MA, Amin AZM, Lopes AM. Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations. Commun Nonlinear Sci Numer Simul. 2019; 72: 342-359.
- 22Hosseini VR, Chen W, Avazzadeh Z. Numerical solution of fractional telegraph equation by using radial basis functions. Eng Anal Bound Elem. 2014; 38: 31-39.
- 23Alsuyuti MM, Doha EH, Ezz-Eldien SS, Bayoumi BI, Baleanu D. Modified Galerkin algorithm for solving multi type fractional differential equations. Math Meth Appl Sci. 2019; 42: 1389-1412.
- 24Kumar S. New analytical modelling for fractional telegraph equation via Laplace transform. Appl Math Modell. 2014; 38: 3154-3163.
- 25Zaky MA. Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J Comput Appl Math. 2019; 357: 103-122.
- 26Bira B, Sekhar TR, Zeidan D. Exact solutions for some time-fractional evolution equations using Lie group theory. Math Meth Appl Sci. 2018; 41: 6717-6725.
- 27Esmaeili S, Shamsi M. A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun Nonlinear Sci Numer Simul. 2011; 11: 3646-3654.
- 28Ray SS. A new numerical approach for single rational soliton solution of Chen-Lee-Liu equation with Riesz fractional derivative in optical fibers. Math Meth Appl Sci. 2019; 42: 99-114.
- 29Hafez RM, Youssri YH. Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation. Comput Appl Math. 2018; 37: 5315-5333.
- 30Mirzaee F, Alipour S. Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial Volterra integro-differential equations. Math Meth Appl Sci. 2019; 42: 1870-1893.
- 31Jiang YL, Ding XL. Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J Comput Appl Math. 2013; 238: 51-67.
- 32Youssri YH. New operational matrix of Caputo fractional derivatives of Fermat polynomials: an application for solving the Bagley-Torvik equation. Adv Diff Equ. 2017; 2017: 73.
- 33Ahmadian A, Ismail F, Salahshour S, Baleanu D, Ghaemi F. Uncertain viscoelastic models with fractional order: a new spectral tau method to study the numerical simulations of the solution. Commun Nonlinear Sci Numer Simul. 2017; 53: 44-64.
- 34Yang X, Jiang X, Zhang H. A time-space spectral tau method for the time fractional cable equation and its inverse problem. Appl Numer Math. 2018; 130: 95-111.
- 35Rashidinia J, Mohmedi M. Convergence analysis of tau scheme for the fractional reaction-diffusion equation. Euro Phys J Plus. 2018; 133: 402(14 pages).
- 36Mokhtary P, Ghoreishi F, Srivastava HM. The Müntz-Legendre Tau method for fractional differential equations. Appl Math Model. 2016; 40: 671-684.
- 37Mohammadi F, Cattani C. A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations.J Cmput Appl Math. 2018; 339: 306-316.
- 38Ezz-Eldien SS. On solving fractional logistic population models with applications. Comput Appl Math. 2018; 37: 6392-6409.
- 39Van der Pol B. A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1920; 1: 701-710.
- 40Van der Pol B. On relaxation oscillations. Philos Mag. 1926; 7(2): 978-992.
10.1080/14786442608564127 Google Scholar
- 41Kao YH, Wang CS. Analog study of bifurcation structures in a Van der Pol oscillator with a nonlinear restoring force. Phys Rev E. 1993; 48(4): 2514-2520.
- 42Rompala K, Rand R, Howland H. Dynamics of three coupled Van der Pol oscillators with application to circadian rhythms. Commun bNonlinear Sci Numer Simul. 2007; 12: 794-803.
- 43Leung AYT, Guo ZJ. Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping. Commun Nonlinear Sci Numer Simul. 2011; 16: 2169-2218.
- 44Pinto C, Machado JAT. Forced Van der Pol Oscillator of Complex Order. Rome, Italy: ENOC; 2011.
- 45Letellier C, Messager V, Gilmore R. From quasi-periodicity to toroidal chaos: analogy between the Curry-Yorkemap and the Van der Pol system. Phys Rev E. 2008; 77: 46203.
- 46Leung AYT, Guo Z, Yang HX. Residue harmonic balance analysis for the damped Duffing resonator driven by a Van der Pol oscillator. Int J Mech Sci. 2012; 63: 59-65.
- 47Pereira E, Monje CA, Vinagre BM, Gordillo F. MATLAB tool box for the analysis of fractional order systems with hard nonlinearities. In: Proceedings of the First IFAC Congress on Fractional Differentiation and Its Applications; 2004; Bordeaux, France: 214-219.
- 48Xie F, Lin XY. Asymptotic solution of the Van der Pol oscillator with small fractional damping. Physica Scripta. 2009; 136: 14033-014034.
- 49Barbosa RS, Machado JAT, Ferreira MI, Tar KJ. Dynamics of the fractional order Van der Pol oscillator. In: Proceedings of the Second IEEE International Conference on Computational Cybernetics (ICCC 04). Austria:Vienna University of Technology; 2004: 373-378.
- 50Barbosa RS, Machado JAT, Vinagre BM, Calderon AJ. Analysis of the Van der Pol oscillator containing derivatives of fractional order.J Vib Control. 2007; 13: 1291-1301.
- 51Mishra V, Das S, Jafari H, Ong SH. Study of fractional order Van der Pol equation. J King Saud University Sci. 2016; 28: 55-60.
- 52Chen YM, Liu JK. A study of homotopy analysis method for limit cycle of Van der Pol equation. Commun Nonlinear Sci Numer Simulat. 2009; 14: 1816-1821.
- 53Leung AYT, Yang HX, Guo Z. The residue harmonic balance for fractional order Van der Pol like oscillators. J Sound Vib. 2012; 331: 1115-1126.
- 54Suchorsky MK, Rand RH. A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dyn. 2012; 69: 313-324.
- 55Xu Y, Agrawal OP. Models and numerical schemes for generalized van der Pol equations. Commun Nonlinear Sci Numer Simulat. 2013; 18: 3575-3589.
- 56Liu QX, Liu JK, Chen YM. Asymptotic limit cycle of fractional Van Der Pol oscillator by homotopy analysis method and memory-free principle. Appl Math Model. 2016; 40(4): 3211-3220.
- 57Kavyanpoor M, Shokrollahi S. Challenge on solutions of fractional Van Der Pol oscillator by using the differential transform method. Chaos, Solitons Fractals. 2017; 98: 44-45.
- 58Sun S, Li Q, Li Y. Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput Math Appl. 2012; 64: 3310-3320.
- 59Granas A, Dugundji J. Fixed Point Theory. New York: Springer-Verlag; 2003.
- 60Boyd DW, Wong JSW. On nonlinear contractions. Proc Amer Math Soc. 1969; 20: 458-464.
- 61Ezz-Eldien SS, Doha EH, Baleanu D, Bhrawy AH. A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J Vib Control. 2017; 23: 16-30.
- 62Ezz-Eldien SS. New quadrature approach based on operational matrix for solving a class of fractional variational problems. J Comput Phys. 2016; 317: 362-381.
- 63Ezz-Eldien SS. On solving systems of multi-pantograph equations via spectral tau method. Appl Math Comput. 2018; 321: 63-73.
- 64Jafari H, Khalique CM, Nazari M. An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation. Math Comput Model. 2012; 55: 1782-1786.
10.1016/j.mcm.2011.11.029 Google Scholar
- 65Aam A. Laplace homotopy perturbation method (LHAM) to fractional oscillation equations. J Appl Comput Math. 2016; 5: 1000336(4 pages).
- 66Sardar T, Ray SS, Bera RK, Biswas BB. The analytical approximate solution of the multi-term fractionally damped Van der Pol equation. Phys Scr. 2009; 80: 25003 (4 pages).
- 67Ray SS, Patra A. Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system. Apl Math Comput. 2013; 220: 659-667.
- 68Maleknejad K, Torkzadeh L. Application of hybrid functions for solving oscillator equations. Rom J Phys. 2015; 60: 87-98.
- 69Abd-Elhameed WM, Youssri YH. A novel opertional matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations. Entropy. 2016; 18: 345 (15 pages).