Volume 44, Issue 10 pp. 7904-7914
SPECIAL ISSUE PAPER

Comparison of two reliable methods to solve fractional Rosenau-Hyman equation

Mehmet Senol

Corresponding Author

Mehmet Senol

Department of Mathematics, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey

Correspondence

Mehmet Senol, Department of Mathematics, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey.

Email: [email protected]

Communicated by: D. Zeidan

Search for more papers by this author
Orkun Tasbozan

Orkun Tasbozan

Department of Mathematics, Mustafa Kemal University, Antakya, Turkey

Search for more papers by this author
Ali Kurt

Ali Kurt

Department of Mathematics, Mustafa Kemal University, Antakya, Turkey

Search for more papers by this author
First published: 29 January 2019
Citations: 22

Abstract

In this study, we examine the numerical solutions of the time-fractional Rosenau-Hyman equation, which is a KdV-like model. This model demonstrates the formation of patterns in liquid drops. For this purpose, two reliable methods, residual power series method (RPSM) and perturbation-iteration algorithm (PIA), are used to obtain approximate solutions of the model. The fractional derivative is taken in the Caputo sense. Obtained results are compared with each other and the exact solutions both numerically and graphically. The outcome shows that both methods are easy to implement, powerful, and reliable. So they are ready to implement for a variety of partial fractional differential equations.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.