Recurrent solutions of the linearly coupled complex cubic-quintic Ginzburg-Landau equations
Corresponding Author
Peng Gao
School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, P. R. China
Correspondence
Peng Gao, School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, P. R. China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Peng Gao
School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, P. R. China
Correspondence
Peng Gao, School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, P. R. China.
Email: [email protected]
Search for more papers by this authorAbstract
In this paper, we will establish the bounded solutions, periodic solutions, quasiperiodic solutions, almost periodic solutions, and almost automorphic solutions for linearly coupled complex cubic-quintic Ginzburg-Landau equations, under suitable conditions. The main difficulty is the nonlinear terms in the equations that are not Lipschitz-continuity, traditional methods cannot deal with the difficulty in our problem. We overcome this difficulty by the Galerkin approach, energy estimate method, and refined inequality technique.
REFERENCES
- 1Atai J, Malomed BA. Stability and interactions of solitons in two-component active systems[J]. Phys Rev E. 1996; 54: 4371-4374.
- 2Marti-Panameno E, Gomez-Pavon LC, Luis-Ramos A, Mendez-Otero MM, Castillo MDI. Self-mode-locking action in a dualcore ring fiber laser[J]. Opt Commun. 2001; 194: 409-414.
- 3Winful HG, Walton DT. Passive mode locking through nonlinear coupling in dual-core fiber laser[J]. Opt Lett. 1992; 17: 1688-1690.
- 4Walton DT, Winful HG. Passive mode locking with an active nonlinear directional coupler: positive group velocity dispersion[J]. Opt Lett. 1993; 18: 720-722.
- 5Sakaguchi H. Phase Dynamics of the Coupled Complex Ginzburg-Landau Equations[J]. Prog Theor Phys. 1995; 93(3): 491-502.
10.1143/ptp/93.3.491 Google Scholar
- 6Gao P, Li Y. Averaging principle for the Schrödinger equations[J]. Discrete Contin Dyn Syst - Ser B. 2017; 22(6): 2147-2168.
- 7Ilyin AA. Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides[J]. Sbornik: Math. 1996; 187(5): 635.
- 8Kokocki P. Invariant sets and connecting orbits for nonlinear evolution equations at resonance[J]. 2015; 140(4): 447-455.
- 9Kokocki P. Effect of resonance on the existence of periodic solutions for strongly damped wave equation[J]. Nonlinear Anal Theory Methods Appl. 2015; 125: 167-200.
- 10Kannan R, Lakshmikantham V. Existence of periodic solutions of semilinear parabolic equations and the method of upper and lower solutions[J]. J Math Anal Appl. 1983; 97(1): 291-299.
- 11Bange DW. Periodic solutions of a quasilinear parabolic differential equation[J]. J Differ Equ. 1975; 17(1): 61-72.
- 12Cindea N, Micu S, Pazoto AF. Periodic solutions for a weakly dissipated hybrid system[J]. J Math Anal Appl. 2012; 385(1): 399-413.
- 13Ma H, Ukai S, Yang T. Time periodic solutions of compressible Navier-Stokes equations. J Differ Equ. 2010; 248(9): 2275-2293.
- 14Yamaguchi M. Almost periodic solutions of one dimensional wave equations with periodic coefficients[J]. J Math Kyoto Univ. 1989; 29(3): 463-487.
10.1215/kjm/1250520221 Google Scholar
- 15Baroun M, Boulite S, Diagana T, et al. Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations[J]. J Math Anal Appl. 2009; 349(1): 74-84.
- 16Coronel A, Maulén C, Pinto M, et al. Almost automorphic delayed differential equations and Lasota-Wazewska model[J]. Discrete Contin Dyn Syst. 2017; 37(4): 1959-1977.
- 17Diagana T. Existence of pseudo almost automorphic solutions to a nonautonomous heat equation[J]. Cubo (Temuco). 2011; 13(1): 73-101.
10.4067/S0719-06462011000100006 Google Scholar
- 18N'Guérékata GM. Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations[C]//Semigroup Forum. Springer-Verlag. 2004; 69(1): 80-86.
- 19Nakao M. On boundedness, periodicity, and almost periodicity of solutions of some nonlinear parabolic equations[J]. J Differ Equ. 1975; 19(2): 371-385.
- 20Nakao M, Nanbu T. On the existence of global, bounded, periodic and almost-periodic solutions of nonlinear parabolic equations. Math Rep Kyushu Univ. 1976; 10(2): 99-112.
- 21Nakao M. Bounded, periodic or almost-periodic solutions of nonlinear hyperbolic partial differential equations[J]. J Differ Equ. 1977; 23(3): 368-386.
- 22Nakao M. On the existence of bounded solution for nonlinear evolution equation of parabolic type. Math Rep Kyushu Univ. 1977; 11(1): 3-14.
- 23Nakao M. Bounded, periodic and almost periodic classical solutions of some nonlinear wave equations with a dissipative term[J]. J Math Soc Japan. 1978; 30(3): 375-394.
- 24Coron JM. Periodic solutions of a nonlinear wave equation without assumption of monotonicity[J]. Math Ann. 1983; 262(2): 273-285.
- 25Bambusi D, Paleari S. Families of periodic solutions of resonant PDEs[J]. J Nonlinear Sci. 2001; 11(1): 69-87.
- 26Gentile G, Mastropietro V, Procesi M. Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions[J]. Commun Math Phys. 2005; 256(2): 437-490.
- 27Berti M, Bolle P. Periodic solutions of nonlinear wave equations with general nonlinearities[J]. Commun Math Phys. 2003; 243(2): 315-328.
- 28Kuksin S, Poschel J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation[J]. Ann Math. 1996; 143(1): 149-179.
- 29Pöschel J. Quasi-periodic solutions for a nonlinear wave equation[J]. Comment Math Helv. 1996; 71(1): 269-296.
- 30Chierchia L, You J. KAM Tori for 1D nonlinear wave equations with periodic boundary conditions[J]. Commun Math Phys. 2000; 211(2): 497-525.
- 31Lions JL, Magenes E. Non-Homogeneous Boundary Value Problems and Applications[M], Grundlehren Math. Wiss., Band 181, vol. I. NewYork-Heidelberg: Springer-Verlag; 1972. translated fromthe French by P.Kenneth.
- 32Chen SH, Hsia CH, Jung CY, et al. Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burgers' equation[J]. J Math Anal Appl. 2017; 445(1): 655-676.
- 33Beirão da Veiga H. Time periodic solutions of the Navier-Stokes equations in unbounded cylindrical domains problem for periodic flows. Arch Ration Mech Anal. 2005; 178(3): 301-325.
- 34Kagei Y, Tsuda K. Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry. J Differ Equ. 2015; 258(2): 399-444.
- 35Chepyzhov VV, Vishik MI, Wendland WL.. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging[J]. Discrete Contin Dyn Syst. 2005; 12(1): 27-38.
- 36Chepyzhov VV, Vishik MI. Non-autonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems[J]. A tribute to J. L. Lions. ESAIM: Control Optim Calc Var. 2002; 8: 467-487.
- 37Chepyzhov V, Vishik M. Attractors for nonautonomous Navier-Stokes system and other partial differential equations. Instability in Models Connected with Fluid Flows I. 2008: 135-265.
10.1007/978-0-387-75217-4_4 Google Scholar
- 38Micu S, Pazoto AF. Almost periodic solutions for a weakly dissipated hybrid system[J]. Math Control Relat Fields. 2014; 4(1): 101-113.
- 39Pöschel J. On the construction of almost periodic solutions for a nonlinear Schrödinger equation[J]. Ergodic Theory Dyn Syst. 2002; 22(05): 1537-1549.
- 40Rui J, Liu B, Zhang J. Almost periodic solutions for a class of linear Schrödinger equations with almost periodic forcing[J]. J Math Phys. 2016; 57(9):092702, 1-25.
- 41Guo B, Yuan R. Almost periodic solution of generalized Ginzburg-Landau equation. Prog Natural Sci. 2001; 11(7): 503-515.
- 42Fu Y, Guo B. Almost periodic solution of one dimensional viscous Camassa-Holm equation[J]. Acta Math Sci. 2007; 27(1): 117-124.
- 43Bochner S. Curvature and Betti numbers in real and complex vector bundles[J]. Universit di Torino, Rendiconti del Seminario Natematico, 15; 1955.
- 44Cieutat P, Ezzinbi K. Almost automorphic solutions for some evolution equations through the minimizing for some subvariant functional, applications to heat and wave equations with nonlinearities[J]. J Funct Anal. 2011; 260(9): 2598-2634.
- 45Liu J, Song X. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations[J]. J Funct Anal. 2010; 258(1): 196-207.
- 46Ezzinbi K, N'Guérékata GM. Massera type theorem for almost automorphic solutions of functional differential equations of neutral type[J]. J Math Anal Appl. 2006; 316(2): 707-721.
- 47Ezzinbi K, N'Guérékata GM. Almost automorphic solutions for some partial functional differential equations[J]. J Math Anal Appl. 2007; 328(1): 344-358.
- 48Adams RA, Fournier JJF. Sobolev Spaces, Pure and Applied Mathematics, vol. 140, Vancouver: Academic press; 2003.
- 49Kamenskii M, Mellah O, De Fitte PR. Weak averaging of semilinear stochastic differential equations with almost periodic coefficients[J]. J Math Anal Appl. 2015; 427(1): 336-364.
- 50Yang D, Hou Z. Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise[J]. Phys D Nonlinear Phenom. 2008; 237(1): 82-91.
- 51Gao P. Carleman estimates and unique continuation property for 1-D viscous Camassa-Holm equation[J]. Discrete Contin Dyn Syst. 2017; 37(1): 169-188.
- 52Gao P. Local exact controllability to the trajectories of the Swift-Hohenberg equation[J]. Nonlinear Analysis Theory Methods & Applications. 2016; 139: 169-195.
- 53Cerpa E, Mercado A, Pazoto AF. On the boundary control of a parabolic system coupling KS-KdV and heat equations. Sci Ser A Math Sci. 2012; 22: 55-74.
- 54Renardy M, Rogers RC. An Introduction to Partial Differential Equations. 2nd ed., Texts in Applied Mathematics, vol. 13. New York: Springer-Verlag; 2004.