On the coupling of regularization techniques and the boundary element method for a hemivariational inequality modelling a delamination problem
Corresponding Author
Nina Ovcharova
Universität der Bundeswehr München, Neubiberg, D-85577 Germany
Correspondence to: Nina Ovcharova, Universität der Bundeswehr München, D-85577 Neubiberg, Germany.
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Nina Ovcharova
Universität der Bundeswehr München, Neubiberg, D-85577 Germany
Correspondence to: Nina Ovcharova, Universität der Bundeswehr München, D-85577 Neubiberg, Germany.
E-mail: [email protected]
Search for more papers by this authorAbstract
In this paper, we couple regularization techniques of nondifferentiable optimization with the h-version of the boundary element method (h-BEM) to solve nonsmooth variational problems arising in contact mechanics. As a model example, we consider the delamination problem. The variational formulation of this problem leads to a hemivariational inequality with a nonsmooth functional defined on the contact boundary. This problem is first regularized and then discretized by an h-BEM. We prove convergence of the h-BEM Galerkin solution of the regularized problem in the energy norm, provide an a priori error estimate and give a numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.
References
- 1Wetzel M, Holtmannspötter J, Gudladt H-J, Czarnecki JV. Sensitivity of double cantilever beam test to surface contamination and surface pretreatment. International Journal of Adhesion and Adhesives. 2013; 46: 114–121.
- 2Ovcharova N. Regularization methods and finite element approximation of hemivariational inequalities with applications to nonmonotone contact problems. PhD Thesis, Universität der Bundeswehr München, Cuvillier Verlag, Göttingen, 2012.
- 3Dao MN, Gwinner J, Noll D, Ovcharova N. Nonconvex bundle method with application to a delamination problem. Computational Optimization and Applications. 2016. DOI 10.1007/s10589-016-9834-0.
- 4Eck C, Steinbach O, Wendland WL. A symmetric boundary element method for contact problems with friction. Mathematics and Computers in Simulation. 1999; 50: 43–61.
- 5Glowinski R. Numerical Methods for Nonlinear Variational Problems. Springer: New York, 1984.
10.1007/978-3-662-12613-4 Google Scholar
- 6Glowinski R, Lions JL, Trémoliéres R. Numerical Analysis of Variational Inequalities. Springer: North-Holland, Amsterdam, 1981.
- 7Kikuchi N, Oden JT. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM: Philadelphia, 1988.
10.1137/1.9781611970845 Google Scholar
- 8Guediri H. On a boundary variational inequality modelling a friction problem. Mathematical Methods in the Applied Sciences. 2002; 25: 93–114.
- 9Han H. A direct boundary element method for Signorini problems. Mathematics of Computation. 1990; 55(191): 115–128.
- 10Maischak M, Stephan EP. Adaptive hp-versions of BEM for Signorini problems. Applied Numerical Mathematics. 2005; 54: 425–449.
- 11Chernov A. Nonconforming boundary elements and finite elements for interface and contact problems with friction – hp-version for mortar, penalty and Nitsche's methods. PhD Thesis, Institute of Applied Mathematics, University of Hanover, 2006.
- 12Chernov A, Stephan EP. Adaptive BEM for Contact Problems with Friction IUTAM Symposium on Computational Methods in Contact Mechanics, Vol.3 of IUTAM Bookser. Springer: Dordrecht, 2007; 113–122.
10.1007/978-1-4020-6405-0_7 Google Scholar
- 13Carstensen C, Funken SA, Stephan EP. On the adaptive coupling of FEM and BEM in 2-d-elasticity. Numerische Mathematik. 1997; 77: 187–221.
- 14Costabel M, Stephan EP. Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM Journal on Numerical Analysis. 1990; 27: 1212–1226.
- 15Maischak M, Stephan EP. A FEM – BEM coupling method for a nonlinear transmission problem modelling Coulomb friction contact. Computer Methods in Applied Mechanics and Engineering. 2004; 194: 453–466.
- 16Antes H, Panagiotopoulos PD. The Boundary Integral Approach to Static and Dynamic Contact Problems. Springer: Basel, 1992.
10.1007/978-3-0348-8650-5 Google Scholar
- 17Nesemann L, Stephan EP. Numerical solution of an adhesion problem with FEM and BEM. Applied Numerical Mathematics. 2012; 62: 606–619.
- 18Lukšan L, Vlček J. A bundle-Newton method for nonsmooth unconstrained minimization. Mathematical Programming. 1998; 83: 373–391.
- 19Clarke F. Optimization and Nonsmooth Analysis. John Wiley and Sons: New York, 1983.
- 20Hsiao GC, Wendland WL. Boundary Integral Equations. Springer: Berlin, Heidelberg, 2008.
- 21Kleiber M. Handbook of Computational Solid Mechanics: Survey and Comparison of Contemporary Methods. Springer: Berlin, 1998.
10.1007/978-3-642-80396-3 Google Scholar
- 22Costabel M. Boundary integral operators on Lipschitz domains: elementary results. SIAM Journal on Mathematical Analysis. 1988; 19: 613–626.
- 23Sloan IH, Spence A. The Galerkin method for integral equations of the first kind with logarithmic kernel: theory. IMA Journal of Numerical Analysis. 1988; 8: 105–122.
- 24Steinbach O. Numerische Näherungsverfahren für elliptische Randwertprobleme, Advances in Numerical Mathematics. Teubner Verlag: Stuttgart, Leipzig, Wiesbaden, 2003.
10.1007/978-3-322-80054-1 Google Scholar
- 25Gwinner J, Ovcharova N. From solvability and approximation of variational inequalities to solution of nondifferentiable optimization problems in contact mechanics. Optimization. 2015; 64(8): 1683–1702.
- 26Ovcharova N, Gwinner J. A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. Journal of Optimization Theory and Applications. 2014; 162(3): 754–778.
- 27Qi L, Sun D. Smoothing functions and a smoothing Newton method for complementarity and variational inequality problems. Journal of Optimization Theory and Applications. 2002; 113(1): 121–147.
- 28Carstensen C, Gwinner J. FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM Journal on Numerical Analysis. 1997; 34: 1845–1864.
- 29Gwinner J, Stephan EP. A boundary element procedure for contact problems in linear elastostatics. ESAIM: Mathematical Modelling and Numerical Analysis. 1993; 27(4): 457–480.
- 30Carstensen C. Interface problem in holonomic elastoplasticity. Mathematical Methods in the Applied Sciences. 1993; 16: 819–835.
- 31Grisvard P. Boundary value problems in non-smooth domains. University of Maryland, MD 20742 Lecture Notes 19, 1980.
- 32Grisvard P. Elliptic Problems in Nonsmooth Domains. SIAM: Philadelphia, 2011.
10.1137/1.9781611972030 Google Scholar
- 33Lions JL, Magenes E. Non-homogeneous Boundary Value Problems and Applications I. Springer: Berlin-Heidelberg-New York, 1972.
- 34Kress R. Linear Integral Equations. Springer: New York, 1999.
10.1007/978-1-4612-0559-3 Google Scholar
- 35Attouch H. Variational Convergence for Functions and Operators. Pitman: Boston, 1984.
- 36Aubin JP, Frankowska H. Set-valued Analysis. Basel: Birkhäuser, 2008.
- 37Costabel M, Stephan EP. Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. Mathematical models and methods in mechanics. 1985; 15: 175–251. Banach center publications.
- 38Eck C, Jarušek J, Krbec M. Unilateral Contact Problems – Variational Methods and Existence Theorems. Chapman & Hall/CRC: Boca Raton, 2005.
10.1201/9781420027365 Google Scholar
- 39Hlavaček I, Haslinger J, Nečas J, Lovišek J. Solution of Variational Inequalities in Mechanics. Springer: Berlin, 1988.
10.1007/978-1-4612-1048-1 Google Scholar
- 40Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. Academic Press: New York, 1980.
- 41Nečas J, Jarušek J, Haslinger J. On the solution of the variational inequality to the Signorini problem with small friction. Bolletino U.M.I. 1980; 17: 407–428.
- 42Panagiotopoulos PD. A nonlinear programming approach to the unilateral contact- and friction-boundary value problems in the theory of elasticity. Ingenieur-Archiv. 1975; 44(6): 421–432.