A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1)
Corresponding Author
Gilberto González-Parra
Grupo de Matemática Multidisciplinar (GMM), Fac. de Ingeniería, Universidad de los Andes, Mérida, Venezuela
Centro de Investigaciones en Matemática Aplicada (CIMA), Universidad de los Andes, Mérida, Venezuela
Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, USA
Correspondence to: Gilberto González-Parra, Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, USA.
E-mail: [email protected]
Search for more papers by this authorAbraham J. Arenas
Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería, Colombia
Grupo Teseeo, Universidad del Sinú, Montería, Colombia
Search for more papers by this authorBenito M. Chen-Charpentier
Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, USA
Search for more papers by this authorCorresponding Author
Gilberto González-Parra
Grupo de Matemática Multidisciplinar (GMM), Fac. de Ingeniería, Universidad de los Andes, Mérida, Venezuela
Centro de Investigaciones en Matemática Aplicada (CIMA), Universidad de los Andes, Mérida, Venezuela
Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, USA
Correspondence to: Gilberto González-Parra, Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, USA.
E-mail: [email protected]
Search for more papers by this authorAbraham J. Arenas
Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería, Colombia
Grupo Teseeo, Universidad del Sinú, Montería, Colombia
Search for more papers by this authorBenito M. Chen-Charpentier
Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408, USA
Search for more papers by this authorAbstract
In this paper, we propose a nonlinear fractional order model in order to explain and understand the outbreaks of influenza A(H1N1). In the fractional model, the next state depends not only upon its current state but also upon all of its historical states. Thus, the fractional model is more general than the classical epidemic models. In order to deal with the fractional derivatives of the model, we rely on the Caputo operator and on the Grünwald–Letnikov method to numerically approximate the fractional derivatives. We conclude that the nonlinear fractional order epidemic model is well suited to provide numerical results that agree very well with real data of influenza A(H1N1) at the level population. In addition, the proposed model can provide useful information for the understanding, prediction, and control of the transmission of different epidemics worldwide. Copyright © 2013 John Wiley & Sons, Ltd.
References
- 1 CDC. H1N1 flu. center for disease control and prevention website. Available from:http://www.cdc.gov/h1n1flu/.
- 2 Takeuchi S, Kuroda Y. Predicting spread of new pandemic swine-origin influenza A (H1N1) in local mid-size city: evaluation of hospital bed shortage and effectiveness of vaccination. Nippon Eiseigaku Zasshi 2010; 65(1): 48–52.
- 3 Tracht S, Del Valle S, Hyman J. Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1). PLoS One 2010; 5(2): e9018.
- 4 Webb GF, Hsieh YH, Wu J, Blaser MJ. Pre-symptomatic influenza transmission, surveillance, and school closings: implications for novel influenza A (H1N1). Mathematical Modelling of Natural Phenomena 2010; 5(3): 191–205.
- 5 Hethcote H. Mathematics of infectious diseases. SIAM Review 2005; 42(4): 599–653.
- 6
Murray JD. Mathematical Biology I. An Introduction. Springer: Berlin, 2002.
10.1007/b98868 Google Scholar
- 7 Towers S, Feng Z. Pandemic H1N1 influenza: predicting the course of a pandemic and assessing the efficacy of the planned vaccination programme in the United States. Euro Surveill. 2009; 14(41): 1–3.
- 8 Rodrigues HS, Monteiro MTT, Torres DFM, Zinober A. Dengue disease, basic reproduction number and control. International Journal of Computer Mathematics 2012; 89(3): 334–346.
- 9 Whang S, Choi S, Jung E. A dynamic model for tuberculosis transmission and optimal treatment strategies in South Korea. Journal of Theoretical Biology 2011; 279(1): 120–131.
- 10 Zhang J, Jin Z, Sun GQ, Zhou T, Ruan S. Analysis of rabies in China: transmission dynamics and control. PLoS ONE 2011; 6(7): e20891.
- 11 Ong J, Chen M, Cook A, Lee H, Lee V, Lin R, Tambyah P, Goh L. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLoS ONE 2010; 5(4): e10036.
- 12 González-Parra G, Arenas A, Diego F. Aranda LS. Modeling the epidemic waves of AH1N1/09 influenza around the world. Spatial and Spatio-temporal Epidemiology 2011; 2(4): 219–226.
- 13 González-Parra GC, Villanueva R, Segovia L. Diámica del virus pandémico AH1N1/09 en la población de Venezuela. Revista Interciencia 2012; 37(4).
- 14 Skovranek T, Podlubny I, Petras I, Bednarova D. Data fitting using solutions of differential equations: Fractional-order model versus integer-order model. Carpathian Control Conference (ICCC), 2012 13th International, High Tatras, 2012; 703–710.
- 15
Arqub OA,
El-Ajou A. Solution of the fractional epidemic model by homotopy analysis method. Journal of King Saud University - Science 2013; 25(1): 73–81.
10.1016/j.jksus.2012.01.003 Google Scholar
- 16 Ding Y, Wang Z, Ye H. Optimal control of a fractional-order HIV-immune system with memory. Control Systems Technology, IEEE Transactions on 2011; PP(99): 1–7.
- 17 El-Shahed M, Alsaedi A. The fractional SIRC model and influenza A. Mathematical Problems in Engineering 2011; 2011(ID 480378):9 p.
- 18 Hanert E, Schumacher E, Deleersnijder E. Front dynamics in fractional-order epidemic models. Journal of Theoretical Biology 2011; 279(1): 9–16.
- 19
Rida SZ,
Radi ASAE,
Arafa A,
Khalil M. The effect of the environmental parameter on the hantavirus infection through a fractional-order si model. International Journal of Basic and Applied Sciences 2012; 1(2).
10.14419/ijbas.v1i2.26 Google Scholar
- 20 Pinto CM, Machado JT. Fractional model for malaria transmission under control strategies. Computers & Mathematics with Applications 2013; 66(5): 908–916.
- 21 Almarashi AAS. Approximation solution of fractional partial differential equations by neural networks. Advances in Numerical Analysis 2012; 2012(ID 912810):10 p.
- 22 Danca MF, Garrappa R, Tang WK, Chen G. Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching. Computers & Mathematics with Applications 2013; 66(5): 702–716.
- 23 Garg V, Singh K. An improved Grunwald-Letnikov fractional differential mask for image texture enhancement. International Journal 2012; 3: 130–135.
- 24 Hu S, Liao Z, Chen W. Sinogram restoration for low-dosed x-ray computed tomography using fractional-order perona-malik diffusion. Mathematical Problems in Engineering 2012; 2012(ID 391050):13 p.
- 25 Li M. Approximating ideal filters by systems of fractional order. Computational and Mathematical Methods in Medicine 2012; 2012(ID 365054):6 p.
- 26 Skovranek T, Podlubny I, Petras I. Modeling of the national economies in state-space: a fractional calculus approach. Economic Modelling 2012; 29(4): 1322–1327.
- 27 Wei T, Zhang Z. Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Engineering Analysis with Boundary Elements 2013; 37(1): 23–31.
- 28 Scherer R, Kalla S, Tang Y, Huang J. The Grunwald-Letnikov method for fractional differential equations. Computers & Mathematcs with Applications 2011; 62(3): 902–917.
- 29 Al-Rabtah A, Momani S, Ramadan MA. Solving linear and nonlinear fractional differential equations using spline functions. Abstract and Applied Analysis 2012; 2012(ID 426514):9 p.
- 30
Chen J,
Liu F,
Burrage K,
Shen S. Numerical techniques for simulating a fractional mathematical model of epidermal wound healing. Journal of Applied Mathematics and Computing 2012; 41(1-2): 33–47.
10.1007/s12190-012-0591-7 Google Scholar
- 31 Erturk VS, Zaman G, Momani S. A numericanalytic method for approximating a giving up smoking model containing fractional derivatives. Computers & Mathematics with Applications 2012; 64(10): 3065–3074.
- 32 Liu Y. Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method. Abstract and Applied Analysis 2012; 2012(ID 752869):14 p.
- 33 Agrawal OP. A numerical scheme for initial compliance and creep response of a system. Mechanics Research Communications 2009; 36(4): 444–451.
- 34 Rida SZ, Arafa AAM. New method for solving linear fractional differential equations. International Journal of Differential Equations 2011; 2011(ID 814132): 8 p.
- 35 Podlubny I. Fractional Differential Equations, Vol. 204. Academic Press: San Diego, 1999.
- 36 Effati S, Nik HS, Buzhabadi R. Solving famous nonlinear coupled equations with parameters derivative by homotopy analysis method. International Journal of Differential Equations 2011; 2011(ID 545607):15 p.
- 37 Odibat ZM, Shawagfeh NT. Generalized Taylors formula. Applied Mathematics and Computation 2007; 186: 286–293.
- 38 Lin W. Global existence theory and chaos control of fractional differential equations. JMAA 2007; 332: 709–726.
- 39 Ahmed E, El-Sayed A, El-Saka H. Equilibrium points stability and numerical solutions of fractional-order predatorÃśprey and ra bies models. JMAA 2007; 325: 542–553.
- 40 Matignon D. Stability results for fractional diÂğerential equations with applications to control processing. Applied and Computational Engineering in System 1996; 2, Lille, France: 963.
- 41 Hayden F, Fritz R, Lobo M, Alvord W, Strober W, Straus S. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. Journal of Clinical Investigation 1998; 101(3): 643–649.
- 42 Leekha S, Zitterkopf N, Espy M, Smith T, Thompson R, Sampathkumar P. Duration of influenza A virus shedding in hospitalized patients and implications for infection control. Infection Control and Hospital Epidemiology 2007; 28(9): 1071–1076.
- 43 Nelder J, Mead R. A simplex method for function minimization. The Computer Journal 1964; 7: 308–313.
- 44 Diethelm K, Ford N. Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications 2002; 265(2): 229–248.