Higher Order Nonlinear Schrödinger Equation in Domains With Moving Boundaries
Raúl Nina-Mollisaca
Unidad de posgrado, Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru
Search for more papers by this authorCorresponding Author
Mauricio Sepúlveda-Cortés
DIM and CI2MA, Universidad de Concepción, Concepción, Chile
Correspondence:
Mauricio Sepúlveda-Cortés ([email protected])
Search for more papers by this authorRodrigo Véjar-Asem
Departamento de Matemáticas, Universidad de la Serena, La Serena, Chile
Search for more papers by this authorOctavio Vera-Villagrán
Departamento de Matemática, Universidad de Tarapacá, Arica, Chile
Search for more papers by this authorRaúl Nina-Mollisaca
Unidad de posgrado, Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru
Search for more papers by this authorCorresponding Author
Mauricio Sepúlveda-Cortés
DIM and CI2MA, Universidad de Concepción, Concepción, Chile
Correspondence:
Mauricio Sepúlveda-Cortés ([email protected])
Search for more papers by this authorRodrigo Véjar-Asem
Departamento de Matemáticas, Universidad de la Serena, La Serena, Chile
Search for more papers by this authorOctavio Vera-Villagrán
Departamento de Matemática, Universidad de Tarapacá, Arica, Chile
Search for more papers by this authorFunding: The second author MSC was partially financed by Fondecyt-ANID 1220869 project, ECOS200018 ANID Project and Centro de Modelamiento Matemático (CMM), Universidad de Chile, FB210005, BASAL funds for centers of excellence from ANID-Chile. The fourth author OVV was partially financed by projects UTA MAYOR 2022–2023, 4764-22 and UTA MAYOR 2023–2024, 4772-23.
ABSTRACT
The initial boundary value problem in a bounded domain with moving boundaries and nonhomogeneous boundary conditions for a higher order nonlinear Schrödinger (HNLS) equation is considered. Existence and uniqueness of global weak solutions are proved as well as the stability of the solution. Additionally, a conservative numerical method of finite differences is introduced that also verifies stability properties with respect to the -norm, and along with proving its convergence, some interesting numerical examples are shown that illustrate the behavior of the solution.
Conflicts of Interest
The authors declare no conflicts of interest.
References
- 1A. Hasegawa and Y. Kodama, “Nonlinear Pulse Propagation in a Monomode Dielectric Guide,” IEEE Journal of Quantum Electronics 23 (1987): 510–524.
- 2Y. Kodama, “Optical Solitons in a Monomode Fiber,” Journal of Statistical Physics 39 (1985): 597–614.
- 3S.-S. Chen, B. Tian, Q.-X. Qu, H. Li, Y. Sun, and X.-X. Du, “Alfvn Solitons and Generalized Darboux Transformation for a Variable-Coefficient Derivative Nonlinear Schrödinger Equation in an Inhomogeneous Plasma,” Chaos, Solitons & Fractals 148 (2021): 111029.
10.1016/j.chaos.2021.111029 Google Scholar
- 4A. Batal, T. Özsarı, and K. Cem Yılmaz, “Stabilization of Higher Order Schrödinger Equations on a Finite Interval: Part I,” Evolution Equations and Control Theory 10, no. 4 (2021): 861–919.
- 5E. Bisognin, V. Bisognin, and O. Vera, “Stabilization of Solutions for the Higher Order Nonlinear Schrödinger Equation With Localized Damping,” Electronic Journal of Differential Equations 6 (2007): 1–18.
- 6V. Bisognin and O. Vera, “On the Unique Continuation Property for the Higher Order Nonlinear Schrödinger Equation With Constant Coefficients,” Turkish Journal of Mathematics 30 (2007): 265–302.
- 7J. Bona and J. C. Saut, “Dispersive Blow-Up of Solutions of Generalized Kortewegde Vries Equation,” Journal of Differential Equations 103 (1993): 3–57.
- 8M. Chen, “Stabilization of the Higher Order Nonlinear Schrdinger Equation With Constant Coefficients,” Proceedings Mathematical Sciences 128 (2018): 1–15.
10.1007/s12044-018-0410-7 Google Scholar
- 9A. V. Faminskii, “Global Weak Solutions of an Initial-Boundary Value Problem on a Half-Line for the Higher Order Nonlinear Schrdinger Equation,” Journal of Mathematical Analysis and Applications 533, no. 2 (2024): 128003.
10.1016/j.jmaa.2023.128003 Google Scholar
- 10C. Laurey, “Le Probleme de Cauchy Pour Une Équation de Schrödinger Non-Linéaire de Ordre 3,” Comptes rendus de l'Académie des sciences. Série 1, Mathématique 315 (1992): 165–168.
- 11G. Staffilani, “On the Generalized Kortewegde Vries Type Equation,” Differential and Integral Equations 10, no. 4 (1997): 777–796.
10.57262/die/1367438641 Google Scholar
- 12X. Carvajal and F. Linares, “A Higher Order Nonlinear Schrödinger Equation With Variable Coefficients,” Differential and Integral Equations 16 (2003): 1111–1130.
10.57262/die/1356060560 Google Scholar
- 13M. Alves, M. Sepúlveda, and O. Vera, “Smoothing Properties for the Higher-Order Nonlinear Schrödinger Equation With Constant Coefficients,” Nonlinear Analysis 71, no. 3-4 (2009): 948–966.
- 14G. Doronin and N. Larkin, “KdV Equation in Domains With Moving Boundaries,” Journal of Mathematical Analysis and Applications 328 (2007): 503–517.
- 15E. Bisognin, V. Bisognin, M. Sepúlveda, and O. Vera, “Coupled System of Korteweg de Vries Equations Type in Domains With Moving Boundaries,” Journal of Computational and Applied Mathematics 220 (2008): 290–321.
- 16M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, and R. Benabidallah, “On Global Solvability and Asymptotic Behaviour of a Mixed Problem for a Nonlinear Degenerate Kirchhoff Model in Moving Domains,” Bulletin of the Belgian Mathematical Society 10, no. 2 (2003): 179196.
- 17O.-P. Vera Villagran, “Stabilization for a Fourth Order Nonlinear Schrdinger Equation in Domains With Moving Boundaries,” Journal of Partial Differential Equations 34, no. 3 (2021): 268–283.
10.4208/jpde.v34.n3.5 Google Scholar
- 18V. Bisognin, C. Buriol, M. V. Ferreira, M. Sepúlveda, and O. Vera, “Asymptotic Behaviour for a Nonlinear Schrodinger Equation in Domains With Moving Boundaries,” Acta Appl. Math. 125 (2013): 159–172.
- 19M.-M. Cavalcanti, W.-J. Corrêa, A.-V. Faminskii, M.-A. Sepúlveda, and R. Véjar-Asem, “Well-Posedness and Asymptotic Behavior of a Generalized Higher Order Nonlinear Schrödinger Equation With Localized Dissipation,” Computers & Mathematcs with Applications 96 (2021): 188208.
- 20M.-M. Cavalcanti, W.-J. Corrêa, M.-A. Sepúlveda, and R. Véjar-Asem, “Finite Difference Scheme for a Higher Order Nonlinear Schrdinger Equation,” Calcolo 56, no. 4 (2019): 40.
10.1007/s10092-019-0336-1 Google Scholar
- 21M.-M. Cavalcanti, W.-J. Corrêa, M.-A. Sepúlveda, and R. Véjar-Asem, “Finite Difference Scheme for a High Order Nonlinear Schrdinger Equation With Localized Damping,” Studia Universitatis Babes-Bolyai Matematica 64, no. 2 (2019): 161172.
10.24193/subbmath.2019.2.03 Google Scholar
- 22T. Colin and M. Gisclon, “An Initial-Boundary-Value Problem That Approximate the Quarter-Plane Problem for the Kortewegde Vries Equation,” Nonlinear Analysis 46 (2001): 869–892.
- 23M. Sepúlveda and O. Vera, “Numerical Methods for a Transport Equation Perturbed by Dispersive Terms of 3rd and 5th Order,” SCIENTIA Series A: Mathematical Sciences 13 (2006): 13–21.
- 24J. A. Gear, “Strong Interactions Between Solitary Waves Belonging to Different Wave Modes,” Studies in Applied Mathematics 72 (1985): 95–124.
- 25J. A. Gear and R. Grimshaw, “Weak and Strong Interactions Between Internal Solitary Waves,” Studies in Applied Mathematics 70 (1984): 235–258.
- 26A. Friedman, Partial Differential Equations (New York: Holt-Rinehart and Winston, 1969).
- 27L. Nirenberg, “On Elliptic Partial Differential Equations,” Annali della Scuola Normale Superiore di Pisa 3, no. 13 (1959): 115–162.
- 28J. L. Lions, Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires (Paris: Gauthiers-Villars, 1969).
- 29N. A. Larkin, “Korteweg-de Vries and Kuramoto-Sivashinsky Equations in Bounded Domains,” Journal of Mathematical Analysis and Applications 297 (2004): 169–185.
- 30J. P. Aubin, “Un Théorème de Compacité,” Comptes Rendus de l'Académie des Sciences, Paris 256 (1963): 5042–5044.
- 31M. Delfour, M. Fortin, and G. Payre, “Finite-Difference Solutions of a Non-Linear Schrödinger Equation,” Journal of Computational Physics 44, no. 2 (1981): 277–288.