M2 macrophage exosome-derived Apoc1 promotes ferroptosis resistance in osteosarcoma by inhibiting ACSF2 deubiquitination
Ping Yin
Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
Search for more papers by this authorMin Tang
Department of Blood Supply, Changsha Blood Center, Changsha, Hunan, China
Search for more papers by this authorCorresponding Author
Guosheng Zhao
Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
Correspondence Guosheng Zhao, Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
Email: [email protected]
Search for more papers by this authorPing Yin
Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
Search for more papers by this authorMin Tang
Department of Blood Supply, Changsha Blood Center, Changsha, Hunan, China
Search for more papers by this authorCorresponding Author
Guosheng Zhao
Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
Correspondence Guosheng Zhao, Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
Email: [email protected]
Search for more papers by this authorAbstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone. The aim of this study was to investigate the regulatory mechanisms of M2 macrophage exosomes (M2-Exos) in ferroptosis in OS. A mouse model was established to investigate the in vivo role of M2-Exos. We investigated their effects on ferroptosis in OS using erastin, a ferroptosis activator, and deferoxamine mesylate, an iron chelator. In vitro, we investigated whether the Apoc1/Acyl-CoA Synthetase Family Member 2 (ACSF2) axis mediates these effects, using shApoc1 and shACSF2. The mechanisms whereby Apoc1 regulates ACSF2 were examined using cyclohexanone, a protein synthesis inhibitor, and MG132, a proteasomal inhibitor. M2-Exos reversed the inhibitory effects of erastin on OS cells, thus enhancing their viability, migration, invasion, proliferation, and reducing ferroptosis. Apoc1 was highly expressed in M2-Exos, and interfering with this expression reversed the effects of M2-Exos on OS cells. ACSF2 mediated the effects of M2-Exos-derived Apoc1. Apoc1 interacted with ACSF2, which, in turn, interacted with USP40. Apoc1 overexpression increased ACSF2 ubiquitination, promoting its degradation, whereas USP40 overexpression inhibited ACSF2 ubiquitination and promoted its expression. Apoc1 overexpression inhibited ACSF2 binding to USP40. M2-Exos-derived Apoc1 promoted ferroptosis resistance by inhibiting USP40 binding to ACSF2 and promoting ACSF2 ubiquitination and degradation, thus enhancing OS development.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
mc23796-sup-0001-Figure_S1.jpg2 MB | Figure S1. Exosome extraction and characterization. A. Flow cytometry of the M2 macrophage surface markers CD68 and CD206. B. qRT-PCR detection of CD206, CD163, Arg-1, IL-10, and TGF-β expression. *p < 0.05 vs. M0. C. M2-Exos electron micrograph. Scale bar, 25 μm. D. WB analysis of CD9, CD63, and CD81. E. NanoSight analysis of M2-Exos particle-size distribution. F. Detection of M2-Exos uptake by OS cells. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017; 13(8): 480-491. doi:10.1038/nrendo.2017.16
- 2Whelan JS, Davis LE. Osteosarcoma, chondrosarcoma, and chordoma. J Clin Oncol. 2018; 36(2): 188-193. doi:10.1200/jco.2017.75.1743
- 3Zheng Y, Wang G, Chen R, Hua Y, Cai Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res Ther. 2018; 9(1): 22. doi:10.1186/s13287-018-0780-x
- 4Anderson ME. Update on survival in osteosarcoma. Orthop Clin North Am. 2016; 47(1): 283-292. doi:10.1016/j.ocl.2015.08.022
- 5Lilienthal I, Herold N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: a review of current and future strategies. Int J Mol Sci. 2020; 21(18):6885. doi:10.3390/ijms21186885
- 6Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021; 22(4): 266-282. doi:10.1038/s41580-020-00324-8
- 7Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019; 31(51):e1904197. doi:10.1002/adma.201904197
- 8Jiang J, Wang W, Zheng H, et al. Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances. Biomaterials. 2022; 285:121561. doi:10.1016/j.biomaterials.2022.121561
- 9Liu X, Du S, Wang S, Ye K. Ferroptosis in osteosarcoma: a promising future. Front Oncol. 2022; 12:1031779. doi:10.3389/fonc.2022.1031779
- 10Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells. 2020; 9(4):976. doi:10.3390/cells9040976
- 11de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006; 6(1): 24-37. doi:10.1038/nrc1782
- 12Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol. 2013; 4:159. doi:10.3389/fphys.2013.00159
- 13Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002; 196(3): 254-265. doi:10.1002/path.1027
- 14Cersosimo F, Lonardi S, Bernardini G, et al. Tumor-Associated macrophages in osteosarcoma: from mechanisms to therapy. Int J Mol Sci. 2020; 21(15):5207. doi:10.3390/ijms21155207
- 15Raimondi L, De Luca A, Gallo A, et al. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs. Carcinogenesis. 2020; 41(5): 666-677. doi:10.1093/carcin/bgz130
- 16Kok VC, Yu CC. Cancer-Derived exosomes: their role in cancer biology and biomarker development. Int J Nanomedicine. 2020; 15: 8019-8036. doi:10.2147/ijn.S272378
- 17Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between Apoc1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999; 19(3): 472-484. doi:10.1161/01.atv.19.3.472
- 18Jong MC, Dahlmans VE, van Gorp PJ, et al. In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest. 1996; 98(10): 2259-2267. doi:10.1172/jci119036
- 19Muurling M, van den Hoek AM, Mensink RP, et al. Overexpression of Apoc1 in obob mice leads to hepatic steatosis and severe hepatic insulin resistance. J Lipid Res. 2004; 45(1): 9-16. doi:10.1194/jlr.M300240-JLR200
- 20Ren L, Yi J, Yang Y, et al. Systematic pan-cancer analysis identifies Apoc1 as an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis. Pharmacol Res. 2022; 183:106376. doi:10.1016/j.phrs.2022.106376
- 21Luo Z, Peng W, Xu Y, et al. Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/β-catenin pathway-mediated vascular regeneration. Acta Biomater. 2021; 136: 519-532. doi:10.1016/j.actbio.2021.09.026
- 22Li R, He H, He X. Apoc1 promotes the progression of osteosarcoma by binding to MTCH2. Exp Ther Med. 2023; 25(4): 163. doi:10.3892/etm.2023.11862
- 23Zheng X, Chen W, Yi J, et al. Apolipoprotein C1 promotes glioblastoma tumorigenesis by reducing KEAP1/NRF2 and CBS-regulated ferroptosis. Acta Pharmacol Sin. 2022; 43(11): 2977-2992. doi:10.1038/s41401-022-00917-3
- 24Li X, Chen Z, Ni Y, et al. Tumor-associated macrophages secret exosomal miR-155 and miR-196a-5p to promote metastasis of non-small-cell lung cancer. Transl Lung Cancer Res. 2021; 10(3): 1338-1354. doi:10.21037/tlcr-20-1255
- 25Sandiford OA, Donnelly RJ, El-Far MH, et al. Mesenchymal stem Cell-Secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Res. 2021; 81(6): 1567-1582. doi:10.1158/0008-5472.Can-20-2434
- 26Nie J, Ling Y, Jin M, et al. Butyrate enhances erastin-induced ferroptosis of osteosarcoma cells via regulating ATF3/SLC7A11 pathway. Eur J Pharmacol. 2023; 957:176009. doi:10.1016/j.ejphar.2023.176009
- 27Li X, Yang KB, Chen W, et al. CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy. 2021; 17(12): 4323-4340. doi:10.1080/15548627.2021.1912270
- 28An W, Yao S, Sun X, et al. Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLAR(L) and inhibit apoptosis in human non-small cell lung cancer cells. J Exp Clin Cancer Res. 2019; 38(1): 181. doi:10.1186/s13046-019-1182-3
- 29Ding Z, Liu Y, Yao L, et al. Spy1 induces de-ubiquitinating of RIP1 arrest and confers glioblastoma's resistance to tumor necrosis factor (TNF-α)-induced apoptosis through suppressing the association of CLIPR-59 and CYLD. Cell Cycle. 2015; 14(13): 2149-2159. doi:10.1080/15384101.2015.1041688
- 30Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 2018; 17(21-22): 2411-2422. doi:10.1080/15384101.2018.1526603
- 31Yu M, Liu W, Li J, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther. 2020; 11(1): 350. doi:10.1186/s13287-020-01824-2
- 32Luo SH, Tian JM, Chu Y, Zhu HY, Ni JD, Huang J. The BRD4-SRPK2-SRSF2 signal modulates the splicing efficiency of ACSL3 pre-mRNA and influences erastin-induced ferroptosis in osteosarcoma cells. Cell Death Dis. 2023; 14(11): 760. doi:10.1038/s41419-023-06273-2
- 33Zhang Y, Li C, Qin Y, et al. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles. 2021; 10(5):e12073. doi:10.1002/jev2.12073
- 34Ozkan E, Bakar-Ates F. Etoposide in combination with erastin synergistically altered iron homeostasis and induced ferroptotic cell death through regulating IREB2/FPN1 expression in estrogen receptor positive-breast cancer cells. Life Sci. 2023; 312:121222. doi:10.1016/j.lfs.2022.121222
- 35Yang C, Tian Y, Zhao F, et al. Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci. 2020; 21(19):6985. doi:10.3390/ijms21196985
- 36Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006; 66(2): 605-612. doi:10.1158/0008-5472.Can-05-4005
- 37Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010; 141(1): 39-51. doi:10.1016/j.cell.2010.03.014
- 38Li X, Chen Y, Liu X, et al. Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients. Int Immunopharmacol. 2017; 44: 153-159. doi:10.1016/j.intimp.2017.01.006
- 39Liu W, Long Q, Zhang W, et al. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging. 2021; 13(15): 19760-19775.
- 40Pu F, Chen F, Zhang Z, Liu J, Shao Z. Information transfer and biological significance of neoplastic exosomes in the tumor microenvironment of osteosarcoma. Onco Targets Ther. 2020; 13: 8931-8940. doi:10.2147/ott.S266835
- 41Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017; 171(2): 273-285. doi:10.1016/j.cell.2017.09.021
- 42Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell. Jun 10 2019; 35(6): 830-849. doi:10.1016/j.ccell.2019.04.002
- 43Zhang Q, Deng T, Zhang H, et al. Adipocyte-derived exosomal MTTP suppresses ferroptosis and promotes chemoresistance in colorectal cancer. Adv Sci. 2022; 9(28):e2203357. doi:10.1002/advs.202203357
- 44Lin H, Chen X, Zhang C, et al. EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed Pharmacother. 2021; 136:111202. doi:10.1016/j.biopha.2020.111202
- 45Li X, Liu J. FANCD2 inhibits ferroptosis by regulating the JAK2/STAT3 pathway in osteosarcoma. BMC Cancer. 2023; 23(1): 179. doi:10.1186/s12885-023-10626-7
- 46Liu J, Wu S, Xie X, Wang Z, Lei Q. Identification of potential crucial genes and key pathways in osteosarcoma. Hereditas. 2020; 157(1): 29. doi:10.1186/s41065-020-00142-0
- 47Mei L, Long J, Wu S, Mei M, Mei D, Qiu H. Apoc1 reduced anti-PD-1 immunotherapy of nonsmall cell lung cancer via the transformation of M2 into M1 macrophages by ferroptosis by NRF2/HO-1. Anticancer Drugs. 2024; 35(4): 333-343. doi:10.1097/cad.0000000000001573
- 48Watkins PA, Ellis JM. Peroxisomal acyl-CoA synthetases. Biochim et Biophy Acta. 2012; 1822(9): 1411-1420. doi:10.1016/j.bbadis.2012.02.010
- 49Watkins PA, Maiguel D, Jia Z, Pevsner J. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res. 2007; 48(12): 2736-2750. doi:10.1194/jlr.M700378-JLR200
- 50An W, Yao S, Sun X, et al. Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLARL and inhibit apoptosis in human non-small cell lung cancer cells. J Experim Clin Cancer Res. 2019; 38(1): 181. doi:10.1186/s13046-019-1182-3