Histone deacetylase inhibitor belinostat regulates metabolic reprogramming in killing KRAS-mutant human lung cancer cells
Rebecca M. Peter
Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorMd. Shahid Sarwar
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorSarah Z. Mostafa
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorYujue Wang
Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorXiaoyang Su
Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorCorresponding Author
Ah-Ng Kong
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Correspondence Ah-Ng Kong, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
Email: [email protected]
Search for more papers by this authorRebecca M. Peter
Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorMd. Shahid Sarwar
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorSarah Z. Mostafa
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorYujue Wang
Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorXiaoyang Su
Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorCorresponding Author
Ah-Ng Kong
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Correspondence Ah-Ng Kong, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Kirsten rat sarcoma virus (KRAS) oncogene, found in 20%–25% of lung cancer patients, potentially regulates metabolic reprogramming and redox status during tumorigenesis. Histone deacetylase (HDAC) inhibitors have been investigated for treating KRAS-mutant lung cancer. In the current study, we investigate the effect of HDAC inhibitor (HDACi) belinostat at clinically relevant concentration on nuclear factor erythroid 2-related factor 2 (NRF2) and mitochondrial metabolism for the treatment of KRAS-mutant human lung cancer. LC-MS metabolomic study of belinostat on mitochondrial metabolism was performed in G12C KRAS-mutant H358 non-small cell lung cancer cells. Furthermore, l-methionine (methyl-13C) isotope tracer was used to explore the effect of belinostat on one-carbon metabolism. Bioinformatic analyses of metabolomic data were performed to identify the pattern of significantly regulated metabolites. To study the effect of belinostat on redox signaling ARE-NRF2 pathway, luciferase reporter activity assay was done in stably transfected HepG2-C8 cells (containing pARE-TI-luciferase construct), followed by qPCR analysis of NRF2 and its target gene in H358 cells, which was further confirmed in G12S KRAS-mutant A549 cells. Metabolomic study reveals significantly altered metabolites related to redox homeostasis, including tricarboxylic acid (TCA) cycle metabolites (citrate, aconitate, fumarate, malate, and α-ketoglutarate); urea cycle metabolites (Arginine, ornithine, argino-succinate, aspartate, and fumarate); and antioxidative glutathione metabolism pathway (GSH/GSSG and NAD/NADH ratio) after belinostat treatment. 13C stable isotope labeling data indicates potential role of belinostat in creatine biosynthesis via methylation of guanidinoacetate. Moreover, belinostat downregulated the expression of NRF2 and its target gene NAD(P)H:quinone oxidoreductase 1 (NQO1), indicating anticancer effect of belinostat is mediated, potentially via Nrf2-regulated glutathione pathway. Another HDACi panobinostat also showed potential anticancer effect in both H358 and A549 cells via Nrf2 pathway. In summary, belinostat is effective in killing KRAS-mutant human lung cancer cells by regulating mitochondrial metabolism which could be used as biomarkers for preclinical and clinical studies.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
MC23551-sup-0001-Supporting_information_1.xlsx39.5 KB | Supporting information. |
MC23551-sup-0002-Supporting_information_2.xlsx24.7 KB | Supporting information. |
MC23551-sup-0003-Supporting_information_3.xlsx222.1 KB | Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007; 26(37): 5420-5432. doi:10.1038/sj.onc.1210610
- 2Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discovery. 2015; 14(3): 219. doi:10.1038/nrd4579
- 3Morelli MP, Tentler JJ, Kulikowski GN, et al. Preclinical activity of the rational combination of selumetinib (AZD6244) in combination with vorinostat in KRAS-mutant colorectal cancer models. Clin Cancer Res. 2012; 18(4): 1051-1062. doi:10.1158/1078-0432.Ccr-11-1507
- 4Buckley MT, Yoon J, Yee H, et al. The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo. J Transl Med. 2007; 5:49. doi:10.1186/1479-5876-5-49
- 5Zuo Y, Xu H, Chen Z, et al. 17AAG synergizes with belinostat to exhibit a negative effect on the proliferation and invasion of MDAMB231 breast cancer cells. Oncol Rep. 2020; 43(6): 1928-1944. doi:10.3892/or.2020.7563
- 6Abbott KL, Chaudhury CS, Chandran A, et al. Belinostat, at its clinically relevant concentrations, inhibits Rifampicin-Induced CYP3A4 and MDR1 gene expression. Mol Pharmacol. 2019; 95(3): 324-334. doi:10.1124/mol.118.114587
- 7Lobo J, Guimarães-Teixeira C, Barros-Silva D, et al. Efficacy of HDAC inhibitors belinostat and panobinostat against cisplatin-sensitive and cisplatin-resistant testicular germ cell tumors. Cancers. 2020; 12(10):2903. doi:10.3390/cancers12102903
- 8Zang J, Shi B, Liang X, Gao Q, Xu W, Zhang Y. Development of N-hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg Med Chem. 2017; 25(9): 2666-2675. doi:10.1016/j.bmc.2016.12.001
- 9Rajak H, Singh A, Raghuwanshi K, et al. A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity. Curr Med Chem. 2013; 21(23): 2642-2664. doi:10.2174/09298673113209990191
- 10Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020; 70(1): 7-30. doi:10.3322/caac.21590
- 11Jiang ZB, Huang J, Xie C, et al. Combined use of PI3K and MEK inhibitors synergistically inhibits lung cancer with EGFR and KRAS mutations. Oncol Rep. 2016; 36(1): 365-375. doi:10.3892/or.2016.4770
- 12Lee T, Lee B, Choi YL, Han J, Ahn MJ, Um SW. Non-small cell lung cancer with concomitant EGFR, KRAS, and ALK mutation: clinicopathologic features of 12 cases. J Pathol Transl Med. 2016; 50(3): 197-203. doi:10.4132/jptm.2016.03.09
- 13Addeo A, Banna GL, Friedlaender A. KRAS G12C mutations in NSCLC: from target to resistance. Cancers. 2021; 13(11):2541. doi:10.3390/cancers13112541
- 14Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005; 23(25): 5900-5909. doi:10.1200/JCO.2005.02.857
- 15Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005; 2(1):e17. doi:10.1371/journal.pmed.0020017
- 16Min HY, Lee HY. Oncogene-driven metabolic alterations in cancer. Biomol Ther. 2018; 26(1): 45-56. doi:10.4062/biomolther.2017.211
- 17Pupo E, Avanzato D, Middonti E, Bussolino F, Lanzetti L. KRAS-driven metabolic rewiring reveals novel actionable targets in cancer. Front Oncol. 2019; 9:848. doi:10.3389/fonc.2019.00848
- 18Racker E, Resnick RJ, Feldman R. Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc Natl Acad Sci USA. 1985; 82(11): 3535-3538. doi:10.1073/pnas.82.11.3535
- 19Gaglio D, Metallo CM, Gameiro PA, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011; 7: 523. doi:10.1038/msb.2011.56
- 20Brunelli L, Caiola E, Marabese M, Broggini M, Pastorelli R. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget. 2014; 5(13): 4722-4731. doi:10.18632/oncotarget.1958
- 21Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016; 23(1): 27-47. doi:10.1016/j.cmet.2015.12.006
- 22Vanhove K, Graulus GJ, Mesotten L, et al. The metabolic landscape of lung cancer: new insights in a disturbed glucose metabolism. Front Oncol. 2019; 9:1215. doi:10.3389/fonc.2019.01215
- 23Chartoumpekis DV, Wakabayashi N, Kensler TW. Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism. Biochem Soc Trans. 2015; 43(4): 639-644. doi:10.1042/BST20150049
- 24Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014; 39(4): 199-218. doi:10.1016/j.tibs.2014.02.002
- 25Wang XJ, Sun Z, Villeneuve NF, et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 2008; 29(6): 1235-1243. doi:10.1093/carcin/bgn095
- 26Singh A, Misra V, Thimmulappa RK, et al. Dysfunctional KEAP1–NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006; 3(10):e420. doi:10.1371/journal.pmed.0030420
- 27Jiang T, Chen N, Zhao F, et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 2010; 70(13): 5486-5496. doi:10.1158/0008-5472.Can-10-0713
- 28Kim YR, Oh JE, Kim MS, et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol. 2010; 220(4): 446-451. doi:10.1002/path.2653
- 29Zhang P, Singh A, Yegnasubramanian S, et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther. 2010; 9(2): 336-346. doi:10.1158/1535-7163.Mct-09-0589
- 30Fahrmann JF, Grapov DD, Wanichthanarak K, et al. Integrated metabolomics and proteomics highlight altered nicotinamide- and polyamine pathways in lung adenocarcinoma. Carcinogenesis. 2017; 38(3):bgw205. doi:10.1093/carcin/bgw205
- 31Tao S, Wang S, Moghaddam SJ, et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res. 2014; 74(24): 7430-7441. doi:10.1158/0008-5472.CAN-14-1439
- 32Wang L, Wu R, Sargsyan D, et al. Nfe2l2 regulates metabolic rewiring and epigenetic reprogramming in mediating cancer protective effect by fucoxanthin. AAPS J. 2022; 24(1): 30. doi:10.1208/s12248-022-00679-0
- 33Yu R, Lei W, Mandlekar S, et al. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem. 1999; 274(39): 27545-27552. doi:10.1074/jbc.274.39.27545
- 34Hudlikar RR, Sargsyan D, Cheng D, et al. Tobacco carcinogen 4-[Methyl(nitroso)amino]-1-(3-pyridinyl)-1-butanone (NNK) drives metabolic rewiring and epigenetic reprograming in A/J mice lung cancer model and prevention with Diallyl Sulphide (DAS). Carcinogenesis. 2021; 43: 140-149. doi:10.1093/carcin/bgab119
- 35Gao L, Cheng D, Yang J, Wu R, Li W, Kong AN. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. J Nutr Biochem. 2018; 56: 109-115. doi:10.1016/j.jnutbio.2018.01.015
- 36Li S, Wu R, Wang L, et al. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer. Mol Carcinog. 2022; 61(1): 111-121. doi:10.1002/mc.23365
- 37Bott AJ, Shen J, Tonelli C, et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep. 2019; 29(5): 1287-1298. doi:10.1016/j.celrep.2019.09.056
- 38Bianchi M, Crinelli R, Arbore V, Magnani M. Induction of ubiquitin C (UBC) gene transcription is mediated by HSF1: role of proteotoxic and oxidative stress. FEBS Open Bio. 2018; 8(9): 1471-1485. doi:10.1002/2211-5463.12484
- 39Das S, Feng Q, Balasubramanian I, et al. Colonic healing requires Wnt produced by epithelium as well as Tagln+ and Acta2+ stromal cells. Development. 2022; 149(1):dev199587. doi:10.1242/dev.199587
- 40Yu R, Mandlekar S, Lei W, Fahl WE, Tan TH, Kong ANT. p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. J Biol Chem. 2000; 275(4): 2322-2327. doi:10.1074/jbc.275.4.2322
- 41Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010; 38: W71-W77. doi:10.1093/nar/gkq329
- 42Bailey H, McPherson JP, Bailey EB, et al. A phase I study to determine the pharmacokinetics and urinary excretion of belinostat and metabolites in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016; 78(5): 1059-1071. doi:10.1007/s00280-016-3167-7
- 43Liston DR, Davis M. Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. Clin Cancer Res. 2017; 23(14): 3489-3498. doi:10.1158/1078-0432.CCR-16-3083
- 44Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell. 2018; 173(4): 822-837. doi:10.1016/j.cell.2018.03.055
- 45Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010; 285(5): 3341-3350. doi:10.1074/jbc.M109.063784
- 46Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013; 4:e532. doi:10.1038/cddis.2013.60
- 47Locasale JW. Metabolic rewiring drives resistance to targeted cancer therapy. Mol Syst Biol. 2012; 8: 597. doi:10.1038/msb.2012.30
- 48Galluzzi L, Kepp O, Heiden MGV, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discovery. 2013; 12(11): 829-846. doi:10.1038/nrd4145
- 49Nguyen TTT, Zhang Y, Shang E, et al. HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J Clin Invest. 2020; 130(7): 3699-3716. doi:10.1172/Jci129049
- 50Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018; 9(2): 216-237. doi:10.1007/s13238-017-0451-1
- 51Scagliola A, Mainini F, Cardaci S. The tricarboxylic acid cycle at the crossroad between cancer and immunity. Antioxid Redox Signal. 2020; 32(12): 834-852. doi:10.1089/ars.2019.7974
- 52Eniafe J, Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene. 2021; 40(19): 3351-3363. doi:10.1038/s41388-020-01639-8
- 53Filipp FV, Scott DA, Ronai ZA, Osterman AL, Smith JW. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells: reverse TCA cycle flux in hypoxia by IDH. Pigm Cell Melanoma Res. 2012; 25(3): 375-383. doi:10.1111/j.1755-148X.2012.00989.x
- 54Philippe I, Hubert L. The reduced concentration of citrate in cancer cells: an indicator of cancer aggressiveness and a possible therapeutic target. Drug Resist Updates. 2016; 29: 47-53. doi:10.1016/j.drup.2016.09.003
- 55Hanai J, Doro N, Sasaki AT, et al. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol. 2012; 227(4): 1709-1720. doi:10.1002/jcp.22895
- 56Adam J, Hatipoglu E, O'Flaherty L, et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell. 2011; 20(4): 524-537. doi:10.1016/j.ccr.2011.09.006
- 57Liu P, Wu D, Duan J, et al. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 2020; 37:101702. doi:10.1016/j.redox.2020.101702
- 58Kim J, Hu Z, Cai L, et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature. 2017; 546(7656): 168-172. doi:10.1038/nature22359
- 59Sivangala Thandi R, Radhakrishnan RK, Tripathi D, et al. Retracted article: ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection. Nat Commun. 2020; 11(1): 3535. doi:10.1038/s41467-020-17310-5
- 60Chen Y, Si L, Zhang J, et al. Uncovering the antitumor effects and mechanisms of Shikonin against colon cancer on comprehensive analysis. Phytomedicine. 2021; 82:153460. doi:10.1016/j.phymed.2021.153460
- 61Huynh TYL, Oscilowska I, Sáiz J, et al. Metformin treatment or PRODH/POX-Knock out similarly induces apoptosis by reprograming of amino acid metabolism, TCA, urea cycle and pentose phosphate pathway in MCF-7 breast cancer cells. Biomolecules. 2021; 11(12):1888. doi:10.3390/biom11121888
- 62Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med. 2020; 52(1): 15-30. doi:10.1038/s12276-020-0375-3
- 63Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biol. 2015; 17(4): 351-359. doi:10.1038/ncb3124
- 64Klungland A, Robertson AB. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic Biol Med. 2017; 107: 62-68. doi:10.1016/j.freeradbiomed.2016.11.038
- 65Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach. Nat Rev Drug Discovery. 2009; 8(7): 579-591. doi:10.1038/nrd2803
- 66Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019; 25:101084. doi:10.1016/j.redox.2018.101084
- 67Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008; 15(1): 171-182. doi:10.1038/sj.cdd.4402233
- 68Zhao J, Lin X, Meng D, et al. Nrf2 mediates metabolic reprogramming in non-small cell lung cancer. Front Oncol. 2020; 10:578315. doi:10.3389/fonc.2020.578315