The Influence of Length-Diameter Ratio of Cellulose on Friction Characteristics of Screw Surface Investigated by EDEM Simulation
Corresponding Author
Xuan Yin
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]
Search for more papers by this authorDingyao Zhang
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLiqi Li
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorBing Zhang
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Xuan Yin
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]
Search for more papers by this authorDingyao Zhang
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLiqi Li
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorBing Zhang
Key Laboratory of Special Functional Materials Manufacturing Processes and Equipment Ministry of Education, College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorAbstract
This study integrates numerical simulations and tribological experiments using a plate-on-disc tribometer to examine the tribological behavior and wear mechanisms of cellulose materials in the solid transport screw of a parallel co-rotating twin-screw extruder. EDEM simulation results indicate that wear on the left screw primarily occurs on the screw threads while wear on the right screw is concentrated at the junction between the screw threads and the bottom of the screw groove. The meshing region experiences the most severe wear due to the combined effects of shear forces and contact stress. Tribological experiments with a plate-on-disc tribometer reveal that adding cellulose with higher aspect ratios reduces friction coefficients. When cellulose has a high aspect ratio, it improves the alignment of wear scar cracks and cellulose molecular chains on the friction contact surface. This results in a gradual alignment of rod-shaped structural cellulose in the direction of frictional sliding, which reduces impact-spalling wear, micro-cutting wear, and scratching abrasion wear. Additionally, cellulose with higher aspect ratios can withstand higher rotational friction speeds during high-speed friction, forming an orientation transfer layer on the friction contact surface. This enhances surface lubrication and reduces abrasive wear and adhesive wear.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
mats202400083-sup-0001-SupMat.docx4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Wang, J. Peng, Z. Ge, Y. Zhang, B. Guo, Z. Li, China Plastics 2020, 34, 96.
- 2M. Ohara, S. i. Tanifuji, Y. Sasai, T. Sugiyama, S. Umemoto, J. i. Murata, I. Tsujimura, S. i. Kihara, K. Taki, AIChE J. 2020, 66, e17018.
- 3S. Seifert, Plast., Rubber Compos. 2005, 34, 134.
- 4G. Wang, X. Z. Zhu, C. Y. Sun, Adv. Mater. Res. 2012, 468–471, 2211.
- 5J. Meng, X. Du, Y. Li, P. Chen, F. Xia, L. Wan, Fractal and Fractional 2021, 5, 237.
- 6L. Zhang, H. Gao, D. Dong, G. Fu, Q. Liu, Math. Probl. Eng. 2018, 2018, 1.
- 7K. Gao, W. Yan, Z. Liu, X. Zhu, China Plastics 2023, 37, 135.
- 8S. J. Burns, P. T. Piiroinen, K. J. Hanley, Int. J. Numer. Methods Eng. 2019, 119, 432.
- 9X. Q. Gu, J. Yang, Granular Matter 2013, 15, 139.
- 10S. Zhao, T. M. Evans, X. Zhou, Géotechnique 2018, 68, 1085.
- 11Z. Wu, X. Wang, D. Liu, F. Xie, L. G. Ashwehmbom, Z. Zhang, Q. Tang, Biosyst. Eng. 2021, 212, 215.
- 12G. C. Tsiatas, A. E. Charalampakis, Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 1.
- 13M. Ucgul, J. M. Fielke, C. Saunders, Biosyst. Eng. 2014, 121, 105.
- 14H. Roh, A. M. Reinhorn, Eng. Struct. 2010, 32, 3394.
- 15G. B. Muravskii, J. Sound Vib. 2004, 274, 653.
- 16J. Hu, H. Song, S. Sandfeld, X. Liu, Y. Wei, Tribol. Int. 2022, 173, 107660.
- 17R. Aghababaei, K. Zhao, Wear 2021, 476, 203739.
- 18S. Fouvry, T. Liskiewicz, C. Paulin, Wear 2007, 263, 518.
- 19R. Liu, D. Y. Li, in 13th International Conference on Wear of Materials, Wear: VANCOUVER, CANADA, 2001, pp, 956.
- 20M. Reichelt, B. Cappella, Wear 2020, 450–451, 203239.
- 21R. Rybiak, S. Fouvry, T. Liskiewicz, B. Wendler, Surf. Coat. Technol. 2008, 202, 1753.
- 22L. Xu, J. Xing, S. Wei, Y. Zhang, R. Long, Wear 2007, 262, 253.
- 23G. Chen, D. L. Schott, G. Lodewijks, Eng. Comput. 2017, 34, 2031.
- 24C. Zhang, Study on the Behavior and Influencing Factors of Twin Screw Solid Transportation, Master, Kunming University of Science and Technology, Kunming, 2020.
- 25X. Liu, C. Du, X. Fu, H. Zhao, J. Zhang, X. Yang, Eng. Failure Anal. 2021, 128, 105542.
- 26W. Yang, W. Meng, L. Gao, Y. Tan, J. Fottner, X. Dai, F. Yao, Y. Yuan, X. Sun, Iran. J. Sci. Technol., Trans. Mech. Eng. 2022, 46, 15.
- 27K. S. Randhawa, Pigm. Resin Technol. 2024, 53, 882.
- 28K. S. Randhawa, A. D. Patel, J. Polym. Eng. 2021, 41, 339.
- 29K. S. Randhawa, A. D. Patel, e-Polymers 2020, 20, 733.
- 30F. Ansari, A. Sjöstedt, P. T. Larsson, L. A. Berglund, L. Wågberg, Composites, Part A 2015, 74, 60.
- 31B. Barari, E. Omrani, A. Dorri Moghadam, P. L. Menezes, K. M. Pillai, P. K. Rohatgi, Carbohydr. Polym. 2016, 147, 282.
- 32S. K. Barik, V. N. Lad, I. Sreedhar, C. M. Patel, Powder Technol. 2023, 417, 118234.
- 33B. Peters, Fuel Process. Technol. 2011, 92, 1993.
- 34K. Papadikis, H. Gerhauser, A. V. Bridgwater, S. Gu, Biomass Bioenergy 2009, 33, 97.
- 35H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad, A. Dufresne, S. Thomas, Polymer 2017, 132, 368.
- 36S. Wang, Q. Feng, J. Sun, F. Gao, W. Fan, Z. Zhang, X. Li, X. Jiang, ACS Nano 2016, 10, 298.
- 37G. Cheng, M. Zhou, Y. J. Wei, F. Cheng, P. X. Zhu, Polym. Compos. 2017, 40, E365.
- 38S. Kumar, K. K. S. Mer, B. Gangil, V. K. Patel, Defence Technology 2020, 16, 762.
- 39E. H. Ehite, E. Drumm, N. Abdoulmoumine, Particuology 2021, 55, 16.
- 40H. S. Pang, C. W. Hu, X. Yin, B. Zhang, Journal of Beijing University of Chemical Technology 2024, 51, 6.
- 41H. Pang, Y. Yang, X. Yin, B. Zhang, Journal of Beijing University of Chemical Technology 2024, 51, 67.
- 42D. Han, S. Zhang, Y. Pan, C. Wang, Eng. Failure Anal. 2022, 139, 106450.
- 43X. Li, D. Wang, X. Zhu, China Plastics 2022, 36, 160.
- 44E. Wen, R. Song, C. Cai, J. Manuf. Processes 2019, 46, 185.
- 45Y. Xu, J. Geng, Y. Peng, Z. Liu, J. Yu, X. Hu, Tribol. Int. 2018, 121, 241.
- 46Z. Pei, R. Song, Q. Ba, Y. Feng, Wear 2018, 414–415, 341.
- 47X. Cheng, Q. Shangguan, Tribol. Lett. 2006, 23, 77.
- 48L. Bourithis, G. D. Papadimitriou, J. Sideris, Tribol. Int. 2006, 39, 479.
- 49Á. Kalácska, P. De Baets, H. Ben Hamouda, K. Theuwissen, J. Sukumaran, Wear 2021, 482–483, 203980.
- 50E. Abbasi, Q. Luo, D. Owens, Wear 2018, 398–399, 29.
- 51D.-s. Lu, Z.-y. Liu, W. Li, Z. Liao, H. Tian, J.-z. Xian, China Foundry 2015, 12, 39.
- 52A. Inada, S. Min, H. Ohmori, CIRP Ann. 2011, 60, 97.
- 53Q. He, L. Rao, W. Song, H. Liu, S. Zhang, X. Ren, Q. Yang, Phys. Chem. Chem. Phys. 2023, 25, 21649.
- 54F. Yang, R. W. Carpick, D. J. Srolovitz, ACS Nano 2017, 11, 490.
- 55Q. Wang, Z. Wang, J. Mo, Tribol. Int. 2023, 183, 108397.
- 56B. R. Cho, H. Y. Lee, Mater. Sci. Forum 2006, 510–511, 650.
- 57V. Mokshin, Adv. Mech. Eng. 2020, 12, 168781402094547.
- 58A. P. Hekimoğlu, T. Savaşkan, Tribol. Trans. 2016, 59, 1114.
- 59S. Gorantla, P. Parameswaran, K. C. Mondal, J. Comput. Chem. 2021, 42, 1159.
- 60F. Moore, A. Esmaeili, Int. J. Coal Geol. 2012, 96–97, 9.
- 61M. T. Vieira, A. Cavaleiro, B. Trindade, Surf. Coat. Technol. 2002, 151–152, 495.
- 62H. Huang, G. Yang, G. Zhao, X. Mao, X. Gan, Q. Yin, H. Yi, Mater. Sci. Eng., A 2018, 736, 148.
- 63R. Wan, F. Sun, L. Zhang, A. Shan, J. Mater. Eng. Perform. 2014, 23, 2780.
- 64R. Wan, F. Sun, L. Zhang, A. Shan, Mater. Des. 2012, 35, 335.
- 65K. Kako, E. Kawakami, J. Ohta, M. Mayuzumi, Mater. Trans. 2002, 43, 155.
- 66X. Zhou, Z. Ma, L. Yu, Y. Huang, H. Li, Y. Liu, Met. Mater. Int. 2019, 25, 168.
- 67Y. Zhang, H. Wang, N. Ma, X. Li, Mater. Lett. 2005, 59, 3398.
- 68J. H. Li, Y. G. Yang, S. Sömmez, J. A. Taylor, B. Oberdorfer, D. Habe, S. Heugenhauser, P. Schumacher, Int. J. Cast Met. Res. 2016, 29, 158.
- 69M. Abbasi, M. Dehghani, H.-U. Guim, D.-I. Kim, Acta Mater. 2016, 117, 262.
- 70J. Jiang, Y. Liu, C. Liu, J. Mater. Res. Technol. 2022, 20, 195.
- 71V. I. Zurnadzhy, V. G. Efremenko, M. N. Brykov, I. P. Petryshynets, R. T V Kussa, J. Frict. Wear 2020, 41, 119.
- 72L. Xu, F. Wang, M. Li, F. Li, X. Wang, T. Jiang, X. Deng, S. Wei, Wear 2023, 523, 204828.
- 73M. F. C. Ordonez, C. L. G. Amorim, I. Krindges, C. Aguzzoli, I. J. R. Baumvol, C. A. Figueroa, A. Sinatoraa, R. M. Souza, M. C. M. Farias, Surf. Coat. Technol. 2019, 374, 700.
- 74M. D. Conci, A. C. Bozzi, A. R. Franco Jr., Wear 2014, 317, 188.
- 75J. C. A. Batista, M. C. Joseph, C. Godoy, A. Matthews, Wear 2001, 249, 971.
- 76U. P. Agarwal, S. A. PRalph, C. Baez, R. S. Reiner, Cellulose 2021, 28, 9069.
- 77U. P. Agarwal, Molecules 2019, 24, 1659.
- 78X. T. Deng, T. L. Fu, Z. D. Wang, R. D. K. Misra, G. D. Wang, Mater. Sci. Technol. 2016, 32, 320.
- 79S.-C. Shi, T.-F. Huang, Opt. Quantum Electron. 2016, 48, 532.
- 80S. Wang, Q. Cui, J. Zou, Z. Zhang, Wear 2020, 462–463, 203492.
- 81H. Hu, Z. Zhai, Y. Li, H. Wang, J. Dai, Int. J. Adv. Manuf. Technol. 2015, 78, 1407.
- 82X. Xu, S. van der Zwaag, W. Xu, Wear 2017, 384–385, 106.
- 83X. Xu, S. van der Zwaag, W. Xu, Wear 2016, 358–359, 80.
- 84P. Arnaud, S. Baydoun, S. Fouvry, Tribol. Int. 2021, 161, 107077.
- 85W. Gong, Y. Chen, M. Li, R. Kang, Wear 2019, 418–419, 1.
10.1016/j.wear.2018.10.018 Google Scholar
- 86C. Yunxia, G. Wenjun, K. Rui, Chin. J. Aeronaut. 2016, 29, 1119.
10.1016/j.cja.2016.01.001 Google Scholar