A Facile Method in Fabricating Flexible Conductive Composites with Large-Size Segregated Structures for Electromagnetic Interference Shielding
Liang He
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYang Chen
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorXiaoming Shao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorQiyuan Yao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorDing Feng
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLijie Yin
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Wencai Wang
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]
Search for more papers by this authorLiang He
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYang Chen
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorXiaoming Shao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorQiyuan Yao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorDing Feng
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLijie Yin
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Wencai Wang
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]
Search for more papers by this authorAbstract
To resist the plastic deformation of polymer particles during hot press molding, high molecular weights, and moduli are required for composites with segregated structures, thus the prepared composites exhibit poor flexibility. Also, larger particle sizes can bring lower percolation thresholds while the ensuing greater deformation destroys the conductive network. Moreover, segregated composites still face preparation complexities. Herein, a facile method for developing flexible composites with large-size segregated structures is proposed. First, silver-coated polydopamine-modified reduced graphene oxide (Ag@PrGO), as conductive fillers, is prepared by electroless plating. Next, polydimethylsiloxane (PDMS)-coated polyolefin elastomer (POE) beads are put into a bag containing the fillers. After a simple shaking, the fillers are adhered to the POE surface as the cohesive property of cured PDMS. Finally, flexible composites with large-size segregated structures are obtained via hot pressing. Benefiting from the 2D structure of the Ag@PrGO and the ability to slip, the conductive networks possess adaptable deformability. The prepared composites exhibit excellent electrical conductivity (203.55 S cm−1) at filler volume fractions of 3.4 vol%. The EMI shielding effectiveness can reach 70 dB in the X-band at a thickness of 1.9 mm and remains stable after bending and rubbing damage. This work paves the way for constructing large-size segregated structures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400585-sup-0001-SuppMat.docx1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Y. Li, L. X. Liu, Q. W. Wang, H. B. Zhang, W. Chen, G. Yin, Z. Z. Yu, ACS Appl. Mater. Interfaces 2022, 14, 12703.
- 2M. Sang, S. Wang, S. Liu, M. Liu, L. F. Bai, W. Q. Jiang, S. H. Xuan, X. L. Gong, ACS Appl. Mater. Interfaces 2019, 11, 47340.
- 3J. W. Dong, Y. Z. Feng, K. Lin, B. Zhou, F. M. Su, C. T. Liu, Adv. Funct. Mater. 2024, 34, 2310774.
- 4Q. Song, F. Ye, X. W. Yin, W. Li, H. J. Li, Y. S. Liu, K. Z. Li, K. Y. Xie, X. H. Li, Q. G. Fu, L. F. Cheng, L. T. Zhang, B. Q. Wei, Adv. Mater. 2017, 29, 1701583.
- 5S. S. He, X. Sun, H. Zhang, C. D. Yuan, Y. P. Wei, J. J. Li, Macromol. Rapid Commun. 2021, 42, 2100324.
- 6W. Sun, Z. C. Lou, L. Xu, Q. L. Ma, H. Han, M. L. Chen, Q. Y. Wang, J. Q. Han, Y. J. Li, ACS Appl. Mater. Interfaces 2023, 15, 4358.
- 7J. Wang, X. Y. Ma, J. L. Zhou, F. L. Du, C. Teng, ACS Nano 2022, 16, 6700.
- 8D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, Z. M. Li, Adv. Funct. Mater. 2015, 25, 559.
- 9L. Wang, H. Qiu, C. B. Liang, P. Song, Y. X. Han, Y. X. Han, J. W. Gu, J. Kong, D. Pan, Z. H. Guo, Carbon 2019, 141, 506.
- 10Y. J. Chang, R. X. Hao, Y. Q. Yang, G. Z. Zhao, Y. Q. Liu, H. J. Duan, Compos. B. Eng. 2023, 260, 110766.
- 11H. Wu, C. B. Zhu, X. L. Li, X. P. Hu, H. Xie, X. Lu, J. P. Qu, Macromol. Rapid Commun. 2022, 43, 2200387.
- 12A. Katheria, P. Das, A. Bhagat, J. Nayak, S. Paul, N. C. Das, J. Alloys Compd. 2024, 988, 174287.
- 13J. Nayak, P. Das, A. Katheria, S. Giri, P. Banerji, N. C. Das, Poly. Eng. Sci. 2024, 64, 1194.
- 14D. Xing, L. S. Lu, K. S. Teh, Z. P. Wan, Y. X. Xie, Y. Tang, Carbon 2018, 132, 32.
- 15Y. J. Xu, M. H. Hou, Y. J. Feng, M. Y. Li, S. Q. Yang, J. Wang, Colloid surf. A 2023, 669, 131545.
- 16Q. Y. Jiang, X. Liao, J. S. Li, J. Chen, G. Wang, J. Yi, Q. Yang, G. X. Li, Compos. A Appl. Sci. Manuf. 2019, 123, 310.
- 17X. Y. Zheng, H. W. Zhang, R. J. Jiang, Z. H. Liu, S. S. Zhu, W. Y. Li, L. Jiang, X. Zhou, J. Colloid Interface Sci. 2023, 649, 279.
- 18J. L. Chen, Y. N. Shi, K. C. Pan, J. Du, J. Qiu, Macromol. Rapid Commun. 2022, 43, 2100826.
- 19L. C. Jia, R. P. Nie, L. Xu, D. X. Yan, J. Lei, Z. M. Li, Compos. A Appl. Sci. Manuf. 2021, 149, 106555.
- 20X. H. Ma, B. Shen, L. H. Zhang, Y. F. Liu, W. T. Zhai, W. G. Zheng, Compos. Sci. Technol. 2018, 158, 86.
- 21C. J. Xie, Y. W. Fang, Y. X. Chen, J. Liu, Z. X. Guo, X. Y. Hao, C. Li, X. Tuo, Compos. Sci. Technol. 2023, 236, 109992.
- 22H. Deng, Q. Fu, Macromol. Rapid Commun. 2017, 38, 1700444.
- 23B. Xue, Y. Li, Z. L. Cheng, S. D. Yang, L. Xie, S. H. Qin, Q. Zheng, Nanomicro Lett. 2022, 14, 16.
- 24W. Ren, Y. Q. Yang, J. Yang, H. J. Duan, G. Z. Zhao, Y. Q. Liu, Chem. Eng. J. 2021, 415, 129052.
- 25J. Y. Cheng, C. B. Li, Y. F. Xiong, H. B. Zhang, H. Raza, S. Ullah, J. Y. Wu, G. P. Zheng, Q. Cao, D. Q. Zhang, Q. B. Zheng, R. C. Che, Nanomicro Lett. 2022, 14, 80.
- 26L. He, Q. Y. Yao, Y. N. Xu, X. M. Shao, Y. Chen, D. Feng, W. C. Wang, Polymer 2024, 298, 126890.
- 27M. H. Al-Saleh, Synth. Met. 2015, 205, 78.
- 28S. N. Choudhury, P. Das, P. Bhawal, A. Pal, P. Banerji, N. C. Das, Mater. Today Commun. 2023, 35, 106109.
- 29X. H. Tang, J. Li, Y. J. Tan, J. H. Cai, J. H. Liu, M. Wang, Appl. Surf. Sci. 2020, 508, 145178.
- 30H. L. Hu, G. Zhang, L. G. Xiao, H. J. Wang, Q. S. Zhang, Z. D. Zhao, Carbon 2012, 50, 4596.
- 31X. Y. Li, P. P. Zhao, L. X. Han, C. Deng, Compos. Sci. Technol. 2022, 219, 109221.
- 32Q. Y. Huang, Z. H. Tang, D. Wang, S. W. Wu, B. C. Guo, ACS Macro Lett. 2021, 10, 231.
- 33X. Y. Li, M. H. Wu, J. L. Chen, X. Zhou, Q. Ren, L. Wang, B. Shen, W. E. Zheng, Compos. Commun. 2023, 40, 101628.
- 34W. C. Yu, T. Wang, Y. H. Liu, Z. G. Wang, L. Xu, J. H. Tang, K. Dai, H. J. Duan, J. Z. Xu, Z. M. Li, Chem. Eng. J. 2020, 393, 124644.
- 35Y. H. Zhan, J. Wang, K. Y. Zhang, Y. C. Li, Y. Y. Meng, N. Yan, W. K. Wei, F. B. Peng, H. S. Xia, Chem. Eng. J. 2018, 344, 184.
- 36L. B. Wang, X. Y. Wei, G. Wang, S. Zhao, J. Cui, A. L. Gao, G. F. Zhang, Y. H. Yan, Compos. B. Eng. 2020, 185, 107775.
- 37Y. Mamunya, L. Matzui, L. Vovchenko, O. Maruzhenko, V. Oliynyk, S. Pusz, B. Kumanek, U. Szeluga, Compos. Sci. Technol. 2019, 170, 51.
- 38C. F. Zhang, Z. H. Tang, X. L. An, S. F. Fang, S. W. Wu, B. C. Guo, ACS Appl. Mater. Interfaces 2021, 13, 24154.
- 39S. G. Zhao, G. J. Li, H. Liu, K. Dai, G. Q. Zheng, X. R. Yan, C. T. Liu, J. B. Chen, C. Y. Shen, Z. H. Guo, Adv. Mater. Interfaces 2017, 4, 1700265.
- 40H. Pang, L. Xu, D. X. Yan, Z. M. Li, Prog. Polym. Sci. 2014, 39, 1908.
- 41W. C. Wang, R. Y. Li, M. Tian, L. Liu, H. Zou, X. Y. Zhao, L. Q. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 2062.
- 42W. C. Wang, Y. Jiang, Y. Liao, M. Tian, H. Zou, L. Q. Zhang, J. Colloid Interface Sci. 2011, 358, 567.
- 43C. Zhang, L. Xiang, J. W. Zhang, C. Liu, Z. K. Wang, H. B. Zeng, Z. K. Xu, Chem. Sci. 2022, 13, 1698.
- 44M. Z. Hao, M. M. Tang, W. C. Wang, M. Tian, L. Q. Zhang, Y. L. Lu, Compos. B. Eng. 2016, 95, 395.
- 45L. He, X. Shao, M. Tian, W. Wang, ACS Appl. Eng. Mater. 2023, 1, 851.
- 46J. C. Luo, L. Wang, X. W. Huang, B. Li, Z. Guo, X. Song, L. W. Lin, L. C. Tang, H. G. Xue, J. F. Gao, ACS Appl. Mater. Interfaces. 2019, 11, 10883.
- 47S. Kwon, R. Ma, U. Kim, H. R. Choi, S. Baik, Carbon 2014, 68, 118.