A Sustainable Free-Standing Triboelectric Nanogenerator Made of Flexible Composite Film for Brake Pattern Recognition in Automobiles
Nayoon Kim
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorSubhin Hwang
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorSwati Panda
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorCorresponding Author
Sugato Hajra
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunghun Jo
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorHeewon Song
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorMohamed A Belal
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorVenkateswaran Vivekananthan
Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, 522302 India
Search for more papers by this authorBasanta Kumar Panigrahi
Department of Electrical Engineering, Siksha O Anusandhan University, Bhubaneswar, 751030 India
Search for more papers by this authorP. Ganga Raju Achary
Department of Chemistry, Siksha O Anusandhan University, Bhubaneswar, 751030 India
Search for more papers by this authorCorresponding Author
Hoe Joon Kim
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorNayoon Kim
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorSubhin Hwang
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorSwati Panda
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorCorresponding Author
Sugato Hajra
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunghun Jo
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorHeewon Song
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorMohamed A Belal
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
Search for more papers by this authorVenkateswaran Vivekananthan
Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, 522302 India
Search for more papers by this authorBasanta Kumar Panigrahi
Department of Electrical Engineering, Siksha O Anusandhan University, Bhubaneswar, 751030 India
Search for more papers by this authorP. Ganga Raju Achary
Department of Chemistry, Siksha O Anusandhan University, Bhubaneswar, 751030 India
Search for more papers by this authorCorresponding Author
Hoe Joon Kim
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In recent years, the automotive industry has made significant progress in integrating multifunctional sensors to improve vehicle performance, safety, and efficiency. As the number of integrated sensors keeps increasing, there is a growing interest in alternative energy sources. Specifically, self-powered sensor systems based on energy harvesting are drawing much attention, with a main focus on sustainability and reducing reliance on typical batteries. This paper demonstrates the use of triboelectric nanogenerators (TENGs) in a computer mouse for efficient energy harvesting and in automobile braking systems for safety applications using SrBi2Ta2O9 (SBTO) perovskite, blended PDMS composite operating in free-standing mode with an interdigitated patterned aluminum electrode. This self-powered sensor is capable of distinguishing between normal and abnormal braking patterns using digital signal processing techniques. It is noteworthy that the addition of 15% wt. of the SBTO in PDMS composite-based TENG delivered 13.5 V, 45 nA, and an output power of 0.98 µW. This new combination of energy harvesting and safety applications enables real-time monitoring and predictive maintenance in the automotive industry.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400431-sup-0001-SuppMat.docx687.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Jiménez, J. E. Naranjo, J. J. Anaya, F. García, A. Ponz, J. M. Armingol, Trans. Res. Proc. 2016, 14, 2245.
10.1016/j.trpro.2016.05.240 Google Scholar
- 2V. N. Thakur, J. I. Han, J. Ind. Eng. Chem. 2023, 124, 89.
- 3X. Lu, H. Li, X. Zhang, B. Gao, T. Cheng, Nano Energy 2022, 96, 107094.
- 4R. Sekhar, P. Shah, S. Panchal, M. Fowler, R. Fraser, Results in Control and Optimizat. 2022, 9, 100168.
10.1016/j.rico.2022.100168 Google Scholar
- 5T. Li, P. S. Lee, Small Struct. 2022, 3, 2100128.
- 6V. S. R. Kosuru, A. Kavasseri Venkitaraman, World Electric Veh. J. 2023, 14, 101.
10.3390/wevj14040101 Google Scholar
- 7M. Waseem, M. Ahmad, A. Parveen, M. Suhaib, J. Power Sources 2023, 580, 233349.
- 8V. A. Asokan, H. Y. Teah, E. Kawazu, Y. Hotta, Resour., Conserv. Recycl. 2023, 190, 106829.
10.1016/j.resconrec.2022.106829 Google Scholar
- 9M. Navaneeth, S. Potu, A. Babu, B. Lakshakoti, R. K. Rajaboina, U. Kumar K, H. Divi, P. Kodali, K. Balaji, ACS Sustain. Chem. Eng. 2023, 11, 12145.
- 10S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee, H. Shin, V. Vivekananthan, Y. Yang, Y. K. Mishra, H. J. Kim, Small 2023, 19, 2300847.
- 11B. Sun, X. Chen, H. Wang, Mater. Technol. 2023, 38, 2214775.
10.1080/10667857.2023.2214775 Google Scholar
- 12C. Shan, W. He, H. Wu, S. Fu, K. Li, A. Liu, Y. Du, J. Wang, Q. Mu, B. Liu, Adv. Funct. Mater. 2023, 33, 2305768.
- 13S. Hajra, S. Panda, S. Song, B. K. Panigrahi, P. Pakawanit, S. M. Jeong, H. J. Kim, Nano Energy 2023, 114, 108668.
- 14Y. Zeng, Y. Luo, Y. Lu, X. Cao, Nano Energy 2022, 98, 107316.
- 15A. Ahmed, I. Hassan, I. M. Mosa, E. Elsanadidy, G. S. Phadke, M. F. El-Kady, J. F. Rusling, P. R. Selvaganapathy, R. B. Kaner, Nano Energy 2019, 60, 17.
- 16S. Hajra, M. Sahu, A. M. Padhan, J. Swain, B. K. Panigrahi, H.-G. Kim, S.-W. Bang, S. Park, R. Sahu, H. J. Kim, J. Mater. Chem. C 2021, 9, 17319.
- 17S. Divya, S. Hajra, S. Panda, V. Vivekananthan, K. Mistewicz, H. Joon Kim, T. Hwan Oh, Chem. Phys. Lett. 2023, 826, 140648.
- 18Y. Yun, S. Jang, S. Cho, S. H. Lee, H. J. Hwang, D. Choi, Nano Energy 2021, 80, 105525.
- 19K. Ruthvik, A. Babu, P. Supraja, M. Navaneeth, V. Mahesh, K. Uday Kumar, R. Rakesh Kumar, B. Manmada Rao, D. Haranath, K. Prakash, Mater. Lett. 2023, 350, 134947.
- 20E. Elsanadidy, I. M. Mosa, D. Luo, X. Xiao, J. Chen, Z. L. Wang, J. F. Rusling, Adv. Funct. Mater. 2023, 33, 2211177.
- 21Y. Li, G. Li, P. Zhang, H. Zhang, C. Ren, X. Shi, H. Cai, Y. Zhang, Y. Wang, Z. Guo, H. Li, G. Ding, H. Cai, Z. Yang, C. Zhang, Z. L. Wang, Adv. Energy Mater. 2021, 11, 2003921.
- 22S. Hajra, A. M. Padhan, M. Sahu, P. Alagarsamy, K. Lee, H. J. Kim, Nano Energy 2021, 89, 106316.
- 23X. Guo, J. He, Y. Zheng, J. Wu, C. Pan, Y. Zi, H. Cui, X. Li, Nano Res. Energy 2023, 2, e9120074.
10.26599/NRE.2023.9120074 Google Scholar
- 24M. T. Haq, V.-M. K. Ampadu, K. Ksaibati, J. Safety Res. 2023, 84, 7.
- 25Z. Hou, C. Lee, Y. Lv, K. Keung, J. Manufactur. Sys. 2023, 71, 34.
10.1016/j.jmsy.2023.08.005 Google Scholar
- 26S. Niu, Y. Liu, X. Chen, S. Wang, Y. S. Zhou, L. Lin, Y. Xie, Z. L. Wang, Nano Energy 2015, 12, 760.
- 27S. Fu, W. He, Q. Tang, Z. Wang, W. Liu, Q. Li, C. Shan, L. Long, C. Hu, H. Liu, Adv. Mater. 2022, 34, 2105882.
- 28Z. Liu, Y. Huang, Y. Shi, X. Tao, H. He, F. Chen, Z.-X. Huang, Z. L. Wang, X. Chen, J.-P. Qu, Nat. Commun. 2022, 13, 4083.
- 29Z. Pan, W. Wu, J. Zhou, Y. Hu, J. Li, Y. Wang, J. Ma, J. Wen, Micromachines 2024, 15, 314.
- 30R. Ibrahem, J. Egyptian Soc. Tribol. 2024, 21, 53.
10.21608/jest.2024.334766 Google Scholar
- 31Y. Li, W. Li, Z. Jin, X. Luo, G. Xie, H. Tai, Y. Jiang, Y. Yang, Y. Su, Nano Energy 2024, 122, 109291.
- 32J. Dai, G. Xie, C. Chen, Y. Liu, H. Tai, Y. Jiang, Y. Su, Appl. Phys. Lett. 2024, 124, 53701.
- 33C. Chen, G. Xie, J. Dai, W. Li, Y. Cai, J. Li, Q. Zhang, H. Tai, Y. Jiang, Y. Su, Nano Energy 2023, 116, 108788.
- 34Y. Su, S. Chen, B. Liu, H. Lu, X. Luo, C. Chen, W. Li, Y. Long, H. Tai, G. Xie, Y. Jiang, Mater. Today Phys. 2023, 30, 100951.
- 35H. Pan, G. Chen, Y. Chen, A. Di Carlo, M. A. Mayer, S. Shen, C. Chen, W. Li, S. Subramaniam, H. Huang, H. Tai, Y. Jiang, G. Xie, Y. Su, J. Chen, Biosens. Bioelectron. 2023, 222, 114999.
- 36M. Sahu, S. K. Pradhan, S. Hajra, B. K. Panigrahi, R. N. P. Choudhary, Appl. Phys. A 2019, 125, 183.
- 37S. Saha, R. P. Singh, A. Rout, A. Mishra, A. Ali, H. Basumatary, R. Ranjan, J. Appl. Phys. 2023, 133, 64101.
- 38S. Korkmaz, I. A. Kariper, J. Electroceram. 2022, 48, 8.
- 39Y. Liu, Y. Wang, J. Ma, S. Li, H. Pan, C.-W. Nan, Y.-H. Lin, Prog. Mater. Sci. 2022, 127, 100943.
- 40Y.-M. Li, Z.-Y. Shen, F. Wu, T.-Z. Pan, Z.-M. Wang, Z.-G. Xiao, J. Mater. Sci.: Mater. Electron. 2014, 25, 1028.
- 41K. Lee, M. Sahu, S. Hajra, R. Abolhassani, K. Mistewicz, B. Toroń, H.-G. Rubahn, Y. K. Mishra, H. J. Kim, J. Mater. Res. Technol. 2023, 22, 811.
- 42S. Hajra, A. Tripathy, B. K. Panigrahi, R. Choudhary, Mater. Res. Express 2019, 6, 076304.
- 43M. Sahu, S. Hajra, K. Lee, P. Deepti, K. Mistewicz, H. J. Kim, Crystals 2021, 11, 85.
- 44B. Aurivillius, Arkiv kemi 1949, 1, 463.
- 45C.-H. Lu, Y.-C. Chen, J. Eur. Ceram. Soc. 1999, 19, 2909.
- 46I. Coondoo, A. K. Jha, Solid State Commun. 2007, 142, 561.
- 47H. Jaffe, J. Am. Ceram. Soc. 1958, 41, 494.
- 48Z. Xu, IOP Conf. Ser.: Mater. Sci. Eng. 2017, 274, 012141.
10.1088/1757-899X/274/1/012141 Google Scholar
- 49D. Peck, H. S. Matthews, P. Fischbeck, C. T. Hendrickson, Trans. Res. Part A: Policy and Practice 2015, 78, 252.
- 50S. K. Sahoo, N. Mudligiriyappa, A. A. Algethami, P. Manoharan, M. Hamdi, K. Raahemifar, Appl. Sci. 2022, 12, 1317.