Improved Cell Adhesion on Self-Assembled Chiral Nematic Cellulose Nanocrystal Films
Xiaoxiao Wang
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorHaifeng Xu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorFanghui Ning
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShun Duan
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorYang Hu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Xiaokang Ding
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fu-Jian Xu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaoxiao Wang
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorHaifeng Xu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorFanghui Ning
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShun Duan
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorYang Hu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Xiaokang Ding
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fu-Jian Xu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029 P. R. China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown. Herein, this work presents evidence that the left-handed self-assembled chiral nematic CNC films (L-CNC) significantly improve the adhesion of L929 fibroblasts compared to randomly arranged isotropic CNC films (I-CNC). The fluidic force microscopy-based single-cell force spectroscopy is introduced to assess the cell adhesion forces on the substrates of L-CNC and I-CNC, respectively. With this method, a maximum adhesion force of 133.2 nN is quantified for mature L929 fibroblasts after culturing for 24 h on L-CNC, whereas the L929 fibroblasts exert a maximum adhesion force of 78.4 nN on I-CNC under the same condition. Moreover, the instant SCFS reveals that the integrin pathways are involved in sensing the chirality of substrate surfaces. Overall, this work offers a starting point for the regulation of cell adhesion via the self-assembled nano and micro architecture of chiral nematic CNC films, with potential practical applications in tissue engineering and regenerative medicine.
Conflict of Interest
The authors declare no competing financial interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400339-sup-0001-SuppMat.docx809.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Sun, X. Wang, X. Guo, L. Xu, H. Kuang, C. Xu, Chem. Sci. 2022, 13, 3069.
- 2M. Zhang, G. Qing, T. Sun, Chem. Soc. Rev. 2012, 41, 1972.
- 3W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov, Chem. Rev. 2017, 117, 8041.
- 4J. Yeom, P. P. G. Guimaraes, H. M. Ahn, B.-K. Jung, Q. Hu, K. McHugh, M. J. Mitchell, C.-O. Yun, R. Langer, A. Jaklenec, Adv. Mater. 2020, 32, 1903878.
- 5L. Xu, X. Wang, W. Wang, M. Sun, W. J. Choi, J.-Y. Kim, C. Hao, S. Li, A. Qu, M. Lu, X. Wu, F. M. Colombari, W. R. Gomes, A. L. Blanco, A. F. de Moura, X. Guo, H. Kuang, N. A. Kotov, C. Xu, Nature 2022, 601, 366.
- 6X. Yao, Y. Hu, B. Cao, R. Peng, J. Ding, Biomaterials 2013, 34, 9001.
- 7Y. Wang, Y. Yang, X. Wang, T. Yoshitomi, N. Kawazoe, Y. Yang, G. Chen, Biomaterials 2021, 271, 120751.
- 8X. Yao, J. Ding, ACS Appl. Mater. Interfaces 2020, 12, 27971.
- 9X. Zhao, L. Xu, M. Sun, W. Ma, X. Wu, C. Xu, H. Kuang, Nat. Commun. 2017, 8, 2007.
- 10G.-F. Liu, D. Zhang, C.-L. Feng, Angew. Chem., Int. Ed. 2014, 53, 7789.
- 11J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, L. Bergström, NPG Asia Mater. 2014, 6, e80.
- 12Q. Wang, W. Niu, S. Feng, J. Liu, H. Liu, Q. Zhu, ACS Nano 2023, 17, 14283.
- 13Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479.
- 14R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 2011, 40, 3941.
- 15C. Duan, Z. Cheng, B. Wang, J. Zeng, J. Xu, J. Li, W. Gao, K. Chen, Small 2021, 17, 2007306.
- 16T. G. Parton, R. M. Parker, G. T. van de Kerkhof, A. Narkevicius, J. S. Haataja, B. Frka-Petesic, S. Vignolini, Nat. Commun. 2022, 13, 2657.
- 17K. Adstedt, E. A. Popenov, K. J. Pierce, R. Xiong, R. Geryak, V. Cherpak, D. Nepal, T. J. Bunning, V. V. Tsukruk, Adv. Funct. Mater. 2020, 30, 2003597.
- 18A. Tran, W. Y. Hamad, M. J. MacLachlan, ACS Appl. Nano Mater. 2018, 1, 3098.
- 19C. M. Walters, C. E. Boott, T.-D. Nguyen, W. Y. Hamad, M. J. MacLachlan, Biomacromolecules 2020, 21, 1295.
- 20Y.-T. Xu, C. M. Walters, F. D'Acierno, W. Y. Hamad, C. A. Michal, M. J. MacLachlan, Chem. Mater. 2022, 34, 4311.
- 21O. Kose, A. Tran, L. Lewis, W. Y. Hamad, M. J. MacLachlan, Nat. Commun. 2019, 10, 510.
- 22B. Thomas, M. C. Raj, A. K. B., R. M. H., J. Joy, A. Moores, G. L. Drisko, C. Sanchez, Chem. Rev. 2018, 118, 11575.
- 23K. E. Shopsowitz, H. Qi, W. Y. Hamad, M. J. MacLachlan, Nature 2010, 468, 422.
- 24J. A. Kelly, M. Giese, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Acc. Chem. Res. 2014, 47, 1088.
- 25B. Ma, A. Bianco, Nat. Rev. Mater. 2023, 8, 403.
- 26F. Jiang, A. R. Esker, M. Roman, Langmuir 2010, 26, 17919.
- 27A. D. French, Cellulose 2014, 21, 885.
- 28P. Lu, Y.-L. Hsieh, Carbohydr. Polym. 2012, 87, 564.
- 29B. S. L. Brito, F. V. Pereira, J.-L. Putaux, B. Jean, Cellulose 2012, 19, 1527.
- 30O. M. Vanderfleet, E. D. Cranston, Nat. Rev. Mater. 2021, 6, 124.
- 31S. Beck, M. Méthot, J. Bouchard, Cellulose 2015, 22, 101.
- 32C. Selhuber-Unkel, T. Erdmann, M. López-García, H. Kessler, U. S. Schwarz, J. P. Spatz, Biophys. J. 2010, 98, 543.
- 33N. Strohmeyer, M. Bharadwaj, M. Costell, R. Fässler, D. J. Müller, Nat. Mater. 2017, 16, 1262.
- 34M. D. Pierschbacher, E. Ruoslahti, Nature 1984, 309, 30.
- 35V. Petit, J.-P. Thiery, Biol. Cell 2000, 92, 477.
- 36P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, C. M. Waterman, Nature 2010, 468, 580.
- 37H.-C. Chen, P. A. Appeddu, H. Isoda, J.-L. Guan, J. Biol. Chem. 1996, 271, 26329.
- 38B. Klapholz, N. H. Brown, J. Cell Sci. 2017, 130, 2435.
- 39J. L. Bays, K. A. DeMali, Cell. Mol. Life Sci. 2017, 74, 2999.
- 40K. A. DeMali, Trends Biochem. Sci. 2004, 29, 565.
- 41W. Ge, F. Zhang, D. Wang, Q. Wei, Q. Li, Z. Feng, S. Feng, X. Xue, G. Qing, Y. Liu, Small 2022, 18, 2107105.
- 42Q. Li, C. He, C. Wang, Y. Huang, J. Yu, C. Wang, W. Li, X. Zhang, F. Zhang, G. Qing, Small 2023, 19, 2207932.
- 43Y. Huang, Y. Qian, Y. Chang, J. Yu, Q. Li, M. Tang, X. Yang, Z. Liu, H. Li, Z. Zhu, W. Li, F. Zhang, G. Qing, Adv. Mater. 2024, 36, 2308742.
- 44F. Zhang, D. Wang, H. Qin, L. Feng, X. Liang, G. Qing, ACS Appl. Mater. Interfaces 2019, 11, 13114.
- 45T. Or, S. Saem, A. Esteve, D. A. Osorio, K. J. De France, J. Vapaavuori, T. Hoare, A. Cerf, E. D. Cranston, J. M. Moran-Mirabal, ACS Appl. Nano Mater. 2019, 2, 4169.
- 46S. Dong, M. J. Bortner, M. Roman, Ind. Crops Prod. 2016, 93, 76.
- 47Y. Wu, X. Zhang, D. Qiu, Y. Pei, Y. Li, B. Li, S. Liu, Food Hydrocolloids 2021, 120, 106944.
- 48J. Lian, H. Xu, S. Duan, X. Ding, Y. Hu, N. Zhao, X. Ding, F.-J. Xu, Biomacromolecules 2020, 21, 732.
- 49H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426.
- 50X. Wu, X. Ding, F.-J. Xu, Biomacromolecules 2018, 19, 1959.
- 51J. Majoinen, J. Hassinen, J. S. Haataja, H. T. Rekola, E. Kontturi, M. A. Kostiainen, R. H. A. Ras, P. Törmä, O. Ikkala, Adv. Mater. 2016, 28, 5262.
- 52A. Wang, S. Duan, Y. Hu, X. Ding, F.-J. Xu, ACS Appl. Mater. Interfaces 2022, 14, 44173.
- 53H. Xu, S. Duan, Y. Hu, X. Ding, F.-J. Xu, Biomacromolecules 2023, 24, 5847.
- 54Y. Ren, R.-Q. Li, Y.-R. Cai, T. Xia, M. Yang, F.-J. Xu, Adv. Funct. Mater. 2016, 26, 7314.