Selective and Sensitive Detection of Fe3+ Ions Using a Red-Emissive Fluorescent Probe Based on Triphenylamine and Perylene-Linked Conjugated Microporous Polymer
Manivannan Madhu
Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
Search for more papers by this authorS. Santhoshkumar
Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
Search for more papers by this authorChing-Wen Hsiao
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
Search for more papers by this authorCorresponding Author
Wei Lung Tseng
Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Shiao-Wei Kuo
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Mohamed Gamal Mohamed
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515 Egypt
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorManivannan Madhu
Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
Search for more papers by this authorS. Santhoshkumar
Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
Search for more papers by this authorChing-Wen Hsiao
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
Search for more papers by this authorCorresponding Author
Wei Lung Tseng
Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Shiao-Wei Kuo
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Mohamed Gamal Mohamed
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515 Egypt
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
The Expansion of modern industry underscores the urgent need to address heavy metal pollution, which is a threat to human-health and environment. Efforts are underwent to develop precise technologies for detecting heavy metal ions (M+-ion). One promising approach involves the use of Conjugated Microporous Polymers (CMPs) modified with Triphenylamine (TPA) anderylene (Peryl), known as TPA-Peryl-CMP, which emits strong refluorescence. Various analytical techniques, such as Brunauer–Emmett–Teller analysis, Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA), are utilized to characterize the synthesized TPA-Peryl-CMP and understand its functional properties. In addition to its remarkable fluorescence behavior, TPA-Peryl-CMP shows promise as a sensor for Fe3+ ions using a turn-off strategy. Due to its exceptional stability and robust π-electron system, this platform demonstrates remarkable sensitivity and selectivity, significantly improving detection capabilities for specific analytes. Detailed procedures related to the mechanism for detecting Fe3+ ions are outlined for sensing Fe3+ ions, revealing a notably strong linear correlation within the concentration range of 0–3 µM, with a correlation coefficient of 0.9936 and the Limit of detection (LOD) 20 nM. It is anticipated that development of such a kind of TPA-Peryl-CMP will observe broader applications in detecting various analytes related to environmental and biological systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400263-sup-0001-SuppMat.docx4.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Annadhasan, T. Muthukumarasamyvel, V. Sankar Babu, N. Rajendiran, ACS Sustainable Chem. Eng. 2014, 2, 887.
- 2V. Marimuthu, S. Chandirasekar, N. Rajendiran, ChemistrySelect 2018, 3, 3918.
- 3M. Annadhasan, J. Kasthuri, N. Rajendiran, ChemistrySelect 2019, 4, 6557.
- 4M. G. Mohamed, H. Y. Hu, M. Madhu, M. M. Samy, I. M. A. Mekhemer, W. L. Tseng, H. H. Chou, S. W. Kuo, Eur. Polym. J. 2023, 189, 111980.
- 5S. Santhoshkumar, E. Murugan, Appl. Surf. Sci. 2021, 553, 149544.
- 6X. Wu, C. Ma, J. Liu, Y. Liu, S. Luo, M. Xu, P. Wu, W. Li, S. Liu, ACS Sustainable Chem. Eng. 2019, 7, 18801.
- 7R. Mohamed, A. Abdel-Lateef, H. Mahmoud, A. Helal, Chem. Speciation Bioavailability 2012, 24, 31.
- 8M. Faraji, Y. Yamini, A. Saleh, M. Rezaee, M. Ghambarian, R. Hassani, Anal. Chim. Acta 2010, 659, 172.
- 9J. H. Lin, C. W. Chang, W. L. Tseng, Analyst 2010, 135, 104.
- 10C. Y. Ke, Y. T. Wu, W. L. Tseng, Biosens. Bioelectron. 2015, 69, 46.
- 11C. Y. Kuo, W. L. Tseng, Chem. Commun. 2013, 49, 4607.
- 12K. P. Carter, A. M. Young, A. E. Palmer, Chem. Rev. 2014, 114, 4564.
- 13N. De Acha, C. Elosúa, J. M. Corres, F. J. Arregui, Sensors 2019, 19, 599.
- 14W.-B. Tseng, Y.-S. Chou, C.-Z. Lu, M. Madhu, C. Y. Lu, W.-L. Tseng, Biosens. Bioelectron. 2021, 193, 113522.
- 15K. Rajendran, N. Rajendiran, Mater. Res. Exp. 2018, 5, 024008.
- 16T. H. Chen, W. L. Tseng, Anal. Chem. 2017, 89, 11348.
- 17M. G. Mohamed, H. Y. Hu, M. Madhu, M. Ejaz, S. U. Sharma, W. L. Tseng, M. M. Samy, C. W. Huang, J. T. Lee, S. W. Kuo, Micromachines 2022, 13, 1466.
- 18M. G. Mohamed, H. Y. Hu, S. Santhoshkumar, M. Madhu, T. H. Mansoure, C. W. Hsiao, Y. Ye, C. W. Huang, W. L. Tseng, S. W. Kuo, Colloids Surf., A 2024, 680, 132675.
- 19A. S. K. Kumar, W. B. Tseng, E. Arputharaj, P. J. Huang, W. L. Tseng, T. Bajda, ACS Sustainable Chem. Eng. 2023, 11, 6956.
- 20A. S. K. Kumar, J. Warchol, J. Matusik, W. L. Tseng, N. Rajesh, T. Bajda, npj Clean Water 2022, 5, 24.
10.1038/s41545-022-00175-0 Google Scholar
- 21H. Tan, S. Y. Park, ACS Sens. 2021, 6, 1039.
- 22S. A. A. Razavi, A. Morsali, Coord. Chem. Rev. 2020, 415, 213299.
- 23A. I. Said, M. G. Mohamed, M. Madhu, P. N. Singh, S. V. Chaganti, M. H. Elsayed, W. L. Tseng, F. M. Raymo, S. W. Kuo, Polymer 2024, 300, 126988.
10.1016/j.polymer.2024.126988 Google Scholar
- 24A. O. Mousa, M. G. Mohamed, Z. I. Lin, C. H. Chuang, C. K. Chen, S. W. Kuo, Eur. Polym. J. 2023, 196, 112254.
- 25M. G. Mohamed, A. F. M. EL-Mahdy, M. G. Kotp, S. W. Kuo, Mater. Adv. 2022, 3, 707.
- 26C. Gu, N. Huang, J. Gao, F. Xu, Y. Xu, D. Jiang, Angew. Chem., Int. Ed. 2014, 53, 4850.
- 27T. Hasell, Nat. Rev. Mater. 2016, 1, 1.
- 28J. R. Holst, A. Trewin, A. I. Cooper, Nat. Chem. 2010, 2, 915.
- 29J. Chen, T. Qiu, W. Yan, C. F. Faul, J. Mater. Chem. A 2020, 8, 22657.
- 30N. Yuan, A. Zhao, Z. Hu, K. Tan, J. Zhang, Chemosphere 2022, 287, 132227.
- 31R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie, Chem. Soc. Rev. 2009, 38, 481.
- 32R. K. Rajaboina, U. K. Khanapuram, V. Vivekananthan, G. Khandelwal, S. Potu, A. Babu, N. Madathil, M. Velpula, P. Kodali, Small 2024, 20, 2306209.
- 33Y. Liu, L. Chen, L. Yang, T. Lan, H. Wang, C. Hu, X. Han, Q. Liu, J. Chen, Z. Feng, Green Energy Environ. 2024, 9, 217.
- 34T. H. Weng, M. G. Mohamed, S. U. Sharma, S. V. Chaganti, M. M. Samy, J. T. Lee, S. W. Kuo, ACS Appl. Energy Mater. 2022, 5, 14239.
- 35M. M. Samy, M. G. Mohamed, S. U. Sharma, S. V. Chaganti, J. T. Lee, S. W. Kuo, J. Taiwan Inst. Chem. Eng. 2024, 158, 104750.
- 36A. O. Mousa, Z. I. Lin, S. V. Chaganti, C. H. Chuang, C. K. Chen, S. W. Kuo, M. G. Mohamed, Polym. Chem. 2024, 15, 397.
- 37M. G. Mohamed, M. H. Elsayed, C. J. Li, A. E. Hassan, I. M. A. Mekhemer, A. F. Musa, M. K. Hussien, L. C. Chen, K. H. Chen, H. H. Chou, S. W. Kuo, J. Mater. Chem. A 2024, 12, 7693.
- 38C. W. Hsiao, A. M. Elewa, M. G. Mohamed, S. W. Kuo, Sep. Purif. Technol. 2024, 332, 125771.
- 39M. G. Mohamed, S. Y. Chang, M. Ejaz, M. M. Samy, A. O. Mousa, S. W. Kuo, Molecules 2023, 28, 3234.
- 40S. Y. Chang, A. M. Elewa, M. G. Mohamed, I. M. A. Mekhemer, M. M. Samy, K. Zhang, H. H. Chou, S. W. Kuo, Mater. Today Chem. 2023, 33, 101680.
- 41P. N. Singh, M. G. Mohamed, S. V. Chaganti, S. U. Sharma, M. Ejaz, J. T. Lee, S. W. Kuo, ACS Appl. Energy Mater. 2023, 6, 8277.
- 42M. Ejaz, M. G. Mohamed, S. W. Kuo, Polym. Chem. 2023, 14, 2494.
- 43M. M. Samy, I. M. A. Mekhemer, M. G. Mohamed, M. H. Elsayed, K. H. Lin, Y. K. Chen, T. L. Wu, H. H. Chou, S. W. Kuo, Chem. Eng. J. 2022, 446, 137158.
- 44M. G. Mohamed, T. H. Mansoure, M. M. Samy, Y. Takashi, A. A. K. Mohammed, T. Ahamad, S. M. Alshehri, J. Kim, B. M. Matsagar, K. C. W. Wu, S. W. Kuo, Molecules 2022, 27, 2025.
- 45A. O. Mousa, Z. I. Lin, C. H. Chuang, C. K. Chen, S. W. Kuo, M. G. Mohamed, Int. J. Mol. Sci. 2023, 24, 8966.
- 46Z. Zhu, Z. Yang, Y. Fan, C. Liu, H. Sun, W. Liang, A. Li, ACS Appl. Energy Mater. 2020, 3, 5260.
- 47Y. Liao, Z. Cheng, M. Trunk, A. Thomas, Polym. Chem. 2017, 8, 7240.
- 48W. Zhang, S. Li, X. Tang, J. Tang, C. Pan, G. Yu, Appl. Catal., B 2020, 272, 118982.
- 49M. G. Mohamed, S. U. Sharma, C. H. Yang, M. M. Samy, A. A. K. Mohammed, S. V. Chaganti, J.-T. Lee, S. W. Kuo, ACS Appl. Energy Mater. 2021, 4, 14628.
- 50J. S. M. Lee, A. I. Cooper, Chem. Rev. 2020, 120, 2171.
- 51M. G. Mohamed, M. H. Elsayed, Y. Ye, M. M. Samy, A. E. Hassan, T. H. Mansoure, Z. Wen, H. H. Chou, K. H. Chen, S. W. Kuo, Polymers 2023, 15, 182.
- 52M. G. Mohamed, M. H. Elsayed, A. M. Elewa, A. F. M. EL-Mahdy, C. H. Yang, A. A. K. Mohammed, H. H. Chou, S. W. Kuo, Catal. Sci. Technol. 2021, 11, 2229.
- 53M. G. Mohamed, S. V. Chaganti, M. S. Li, M. M. Samy, S. U. Sharma, J. T. Lee, M. H. Elsayed, H. H. Chou, S. W. Kuo, ACS Appl. Energy Mater. 2022, 5, 6442.
- 54H. Sakaguchi, Y. Kawagoe, Y. Hirano, T. Iruka, M. Yano, T. Nakae, Adv. Mater. 2014, 26, 4134.
- 55S. G. Eswaran, T. Stalin, D. Thiruppathi, M. Madhu, S. Santhoshkumar, J. Warchol, A. S. K. Kumar, W. L. Tseng, N. Vasimalai, RSC Sustainability 2024, 2, 635.
10.1039/D3SU00404J Google Scholar
- 56C. H. Chiang, M. G. Mohamed, W. C. Chen, M. Madhu, W. L. Tseng, S. W. Kuo, Polymers 2023, 15, 331.
- 57M. Echeverri, S. Gamez-Valenzuela, R. C. Gonzalez-Cano, J. Guadalupe, S. Cortijo-Campos, J. T. Lopez Navarrete, M. Iglesias, M. C. Ruiz Delgado, B. Gomez-Lor, Chem. Mater. 2019, 31, 6971.
- 58Q. Wang, H. Zhang, D. Yu, W. Qin, X. Wu, Carbon 2022, 198, 162.
- 59Q. Su, X. Yang, ACS Appl. Mater. Interfaces 2021, 13, 41238.
- 60D. Zhen, S. Zhang, A. Yang, L. Li, Q. Cai, C. A. Grimes, Y. Liu, Int. J. Biol. Macromol. 2024, 259, 129104.
- 61J. Dong, K. Zhang, X. Li, Y. Qian, H. Zhu, D. Yuan, Q. H. Xu, J. Jiang, D. Zhao, Nat. Commun. 2017, 8, 1142.
- 62H. Niu, J. O. ’Liu, H. M. Connor, T. Gunnlaugsson, T. D. James, H. Zhang, Chem. Soc. Rev. 2023, 52, 2322.