BaTiO3 Catalyzed Ultrasonic-Driven Piezoelectric-Induced Reversible Addition-Fragmentation Chain-Transfer Polymerization in Aqueous Media
Yu Zhang
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorJunle Zhang
Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou, 450063 China
Search for more papers by this authorShuo Xu
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorGe Shi
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYanjie He
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Xiaoguang Qiao
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou, 451191 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xinchang Pang
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYu Zhang
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorJunle Zhang
Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou, 450063 China
Search for more papers by this authorShuo Xu
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorGe Shi
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYanjie He
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Xiaoguang Qiao
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou, 451191 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xinchang Pang
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Compared with normal stimulus such as light and heat, ultrasonic possesses much deeper penetration into tissues and organs and has lower scattering in heterogeneous systems as a noninvasive stimulus. Reversible addition-fragmentation chain-transfer polymerization (RAFT) in aqueous media is performed in a commercial ultrasonic wash bath with 40 kHz frequency ultrasonic, in the presence of piezoelectric tetragonal BaTiO3 (BTO) nanoparticles. Owing to the electron transfer from BTO under the ultrasonic action, the water can be decomposed to produce hydroxyl radical (HO•) and initiate the RAFT polymerization (piezo-RAFT). The piezo-RAFT polymerization exhibits features of controllable and livingness, such as linear increase of molar mass and narrow molar mass distributions (Mw/Mn < 1.20). Excellent temporal control of the polymerization and the chain fidelity of polymers are illustrated by “ON and OFF” experiment and chain extension, separately. Moreover, this ultrasonic-driven piezoelectric-induced RAFT polymerization in aqueous media can be directly used for the preparation of piezoelectric hydrogel which have potential application for stress sensor.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400235-sup-0001-SuppMat.docx2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. B. Baig, R. S. Varma, Chem. Soc. Rev. 2012, 41, 1559.
- 2B. Banerjee, Ultrason. Sonochem. 2017, 35, 1.
- 3M. Kubo, T. Kondo, H. Matsui, N. Shibasaki-Kitakawa, T. Yonemoto, Ultrason. Sonochem. 2018, 40, 736.
- 4B. M. Teo, F. Grieser, M. Ashokkumar, Macromolecules 2009, 42, 4479.
- 5D. Hua, J. Tang, J. Jiang, Z. Gu, L. Dai, X. Zhu, Mater. Chem. Phys. 2009, 114, 402.
- 6H. Xia, Q. Wang, Y. Liao, X. Xu, S. M. Baxter, R. V. Slone, S. Wu, G. Swift, D. G. Westmoreland, Ultrason. Sonochem. 2002, 9, 151.
- 7T. G. McKenzie, F. Karimi, M. Ashokkumar, G. G. Qiao, Chemistry 2019, 25, 5372.
- 8T. J. Mason, Chem. Soc. Rev. 1997, 26, 443.
- 9Y. T. Didenko, W. B. M. III, K. S. Suslick, J. Am. Chem. Soc. 1999, 12, 5817.
10.1021/ja9844635 Google Scholar
- 10G. Cravotto, P. Cintas, Chem. Sci. 2012, 3, 295.
- 11H. Xu, N. G. Glumac, K. S. Suslick, Angew. Chem., Int. Ed. 2010, 49, 1079.
- 12M. Ashokkumar, F. Grieser, ChemPhysChem 2004, 5, 439.
- 13J. M. J. Paulusse, R. P. Sijbesma, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5445.
- 14H. Xu, B. W. Zeiger, K. S. Suslick, Chem. Soc. Rev. 2013, 42, 2555.
- 15P. A. May, N. F. Munaretto, M. B. Hamoy, M. J. Robb, J. S. Moore, ACS Macro Lett. 2016, 5, 177.
- 16C. Aydogan, G. Yilmaz, A. Shegiwal, D. M. Haddleton, Y. Yagci, Angew. Chem., Int. Ed. 2022, 59, 21392.
- 17J. Xu, K. Jung, A. Atme, S. Shanmugam, C. Boyer, J. Am. Chem. Soc. 2014, 136, 5508.
- 18M. Huo, Y. Zhang, M. Zeng, L. Liu, Y. Wei, J. Yuan, Macromolecules 2017, 50, 8192.
- 19G. K. K. Clothier, T. R. Guimaraes, M. Khan, G. Moad, S. Perrier, P. B. Zetterlund, ACS Macro Lett. 2019, 8, 989.
- 20A. M. Doerr, J. M. Burroughs, S. R. Gitter, X. Yang, A. J. Boydston, B. K. Long, ACS Catal. 2020, 10, 14457.
- 21P. B. Zetterlund, S. C. Thickett, S. Perrier, E. Bourgeat-Lami, M. Lansalot, Chem. Rev. 2015, 115, 9745.
- 22(a) Z. Wang, X. Pan, L. Li, M. Fantin, J. Yan, Z. Wang, Z. Wang, H. Xia, K. Matyjaszewski, Macromolecules 2017, 50, 7940; (b) C. Wang, W. Fan, Z. Li, J. Xiong, W. Zhang, Z. Wang, Polym. Chem. 2022, 13, 4908; (c) Z. Wang, F. Lorandi, M. Fantin, Z. Wang, J. Yan, Z. Wang, H. Xia, K. Matyjaszewski, ACS Macro Lett. 2019, 8, 161.
- 23J. Collins, T. G. McKenzie, M. D. Nothling, S. Allison-Logan, M. Ashokkumar, G. G. Qiao, Macromolecules 2018, 52, 185.
- 24Z. Wang, X. Pan, J. Yan, S. Dadashi-Silab, G. Xie, J. Zhang, Z. Wang, H. Xia, K. Matyjaszewski, ACS Macro Lett. 2017, 6, 546.
- 25Z. Wang, Z. Wang, X. Pan, L. Fu, S. Lathwal, M. Olszewski, J. Yan, A. E. Enciso, Z. Wang, H. Xia, K. Matyjaszewski, ACS Macro Lett. 2018, 7, 275.
- 26H. Mohapatra, M. Kleiman, A. P. Esser-Kahn, Nat. Chem. 2016, 9, 135.
- 27G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
- 28S. Perrier, Macromolecules 2017, 50, 7433.
- 29M. D. Nothling, Q. Fu, A. Reyhani, S. Allison-Logan, K. Jung, J. Zhu, M. Kamigaito, C. Boyer, G. G. Qiao, Adv. Sci. 2020, 7, 2001656.
- 30T. G. McKenzie, E. Colombo, Q. Fu, M. Ashokkumar, G. G. Qiao, Angew. Chem., Int. Ed. 2017, 56, 12302.
- 31P. Kanthale, M. Ashokkumar, F. S. Grieser, Ultrason. Sonochem. 2008, 15, 143.
- 32S. K. B. M. Ashokkumar, Top. Curr. Chem. 2016, 374, 56.
10.1007/s41061-016-0054-y Google Scholar
- 33J. A. Leitch, D. L. Browne, Chem. Eur. J. 2021, 27, 9721.
- 34M. Zhou, Y. Zhang, G. Shi, Y. He, Z. Cui, X. Zhang, P. Fu, M. Liu, X. Qiao, X. Pang, ACS Macro Lett. 2023, 12, 26.
- 35C. Ding, Y. Yan, Y. Peng, D. Wu, H. Shen, J. Zhang, Z. Wang, Z. Zhang, Macromolecules 2022, 55, 4056.
- 36X. Pan, M. Fantin, F. Yuan, K. Matyjaszewski, Chem. Soc. Rev. 2018, 47, 5457.
- 37C. Lv, C. He, X. Pan, Angew. Chem., Int. Ed. 2018, 57, 9430.