Solution-Processable Copolymers Based on Triphenylamine and 3,4-Ethylenedioxythiophene: Facile Synthesis and Multielectrochromism
Wei Teng Neo
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorQun Ye
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorMing Hui Chua
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorQiang Zhu
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorCorresponding Author
Jianwei Xu
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
E-mail: [email protected]
Search for more papers by this authorWei Teng Neo
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorQun Ye
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorMing Hui Chua
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorQiang Zhu
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Search for more papers by this authorCorresponding Author
Jianwei Xu
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A:STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
E-mail: [email protected]
Search for more papers by this authorAbstract
In comparison with traditional inorganic electrochromic materials, organic polymers offer advantages such as fast switching speed, flexibility, lightweightness, low cost and nontoxicity, solution-processability, and color tunability. Herein, a series of hyper-branched copolymers are synthesized from triphenylamine and 3,4-ethylenedioxythiophene with different feed ratios via iron(III) chloride (FeCl3)-mediated oxidative polymerization. The resultant organic-soluble polymers are easily processable and their corresponding electrochromic devices are found to be stable with limited degradation upon 2500 cycles. In addition to their facile synthesis to achieve solution-processable polymers, studies also show that the polymers exhibit multielectrochromic properties and give rise to five colored states upon oxidative-doping by applying an external voltage between 0 and 2.0 V, providing an interesting example of polymers with unique electrochromic switching among up to five colors, from yellow at the neutral state, to pale green, pale purple, orange, and finally gray.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000156-sup-0001-SuppMat.pdf834.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268.
- 2C. K. Lo, D. E. Shen, J. R. Reynolds, Macromolecules 2019, 52, 6773.
- 3W. T. Neo, Q. Ye, S.-J. Chua, J. Xu, J. Mater. Chem. C 2016, 4, 7364.
- 4M. H. Chua, T. Tang, K. H. Ong, W. T. Neo, J. W. Xu, in Electrochromic Smart Materials: Fabrication and Applications, The Royal Society of Chemistry, London, UK 2019, p. 1.
10.1039/9781788016667-00001 Google Scholar
- 5W. T. Neo, M. H. Chua, J. W. Xu, in Electrochromic Smart Materials: Fabrication and Applications, The Royal Society of Chemistry, London, UK 2019, p. 22.
10.1039/9781788016667-00022 Google Scholar
- 6S. Xiong, Y. Xiao, J. Ma, L. Zhang, X. Lu, Macromol. Rapid Commun. 2007, 28, 281.
- 7P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Adv. Mater. 2010, 22, 5383.
- 8A. M. Österholm, D. E. Shen, J. A. Kerszulis, R. H. Bulloch, M. Kuepfert, A. L. Dyer, J. R. Reynolds, ACS Appl. Mater. Interfaces 2015, 7, 1413.
- 9H.-J. Yen, G.-S. Liou, Polym. Chem. 2018, 9, 3001.
- 10M. H. Chua, Q. Zhu, K. W. Shah, J. Xu, Polymers 2019, 11, 98.
- 11P. Audebert, F. Miomandre, Chem. Sci. 2013, 4, 575.
- 12J. Sun, Y. Chen, Z. Liang, Adv. Funct. Mater. 2016, 26, 2783.
- 13L. Zheng, K. W. Shah, in Electrochromic Smart Materials: Fabrication and Applications, The Royal Society of Chemistry, London, UK 2019, p. 494.
10.1039/9781788016667-00494 Google Scholar
- 14S. K. Deb, Appl. Opt. 1969, 8, 192.
- 15S. K. Deb, Philos. Mag. 1973, 27, 801.
- 16M. Z. Sialvi, R. J. Mortimer, G. D. Wilcox, A. M. Teridi, T. S. Varley, K. G. U. Wijayantha, C. A. Kirk, ACS Appl. Mater. Interfaces 2013, 5, 5675.
- 17K.-C. Cheng, F.-R. Chen, J.-J. Kai, Electrochim. Acta 2007, 52, 3330.
- 18J. Joseph, H. Gomathi, G. P. Rao, J. Electroanal. Chem. Interfacial Electrochem. 1991, 304, 263.
- 19R. Yan, L. Liu, H. Zhao, Y. G. Zhu, C. Jia, M. Han, Q. Wang, J. Mater. Chem. C 2016, 4, 8997.
- 20S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, G. A. Ozin, Nano Lett. 2004, 4, 1231.
- 21J. Palenzuela, A. Viñuales, I. Odriozola, G. Cabañero, H. J. Grande, V. Ruiz, ACS Appl. Mater. Interfaces 2014, 6, 14562.
- 22W. T. Neo, C. M. Cho, Z. Shi, S.-J. Chua, J. Xu, J. Mater. Chem. C 2016, 4, 28.
- 23W. T. Neo, L. M. Loo, J. Song, X. Wang, C. M. Cho, H. S. On Chan, Y. Zong, J. Xu, Polym. Chem. 2013, 4, 4663.
- 24G. Ding, C. M. Cho, C. Chen, D. Zhou, X. Wang, A. Y. X. Tan, J. Xu, X. Lu, Org. Electron. 2013, 14, 2748.
- 25G. Ding, H. Zhou, J. Xu, X. Lu, Chem. Commun. 2014, 50, 655.
- 26H.-J. Yen, G.-S. Liou, Prog. Polym. Sci. 2019, 89, 250.
- 27H.-J. Yen, C.-L. Tsai, S.-H. Chen, G.-S. Liou, Macromol. Rapid Commun. 2017, 38, 1600715.
- 28Q. Ye, W. T. Neo, C. M. Cho, S. W. Yang, T. Lin, H. Zhou, H. Yan, X. Lu, C. Chi, J. Xu, Org. Lett. 2014, 16, 6386.
- 29W. T. Neo, Q. Ye, T. T. Lin, S. J. Chua, J. Xu, Sol. Energy Mater. Sol. Cells 2015, 136, 92.
- 30Y.-Z. Fan, C.-H. Chen, G.-S. Liou, Macromol. Rapid Commun. 2019, 40, 1900118.
- 31W. T. Neo, K. H. Ong, T. T. Lin, S.-J. Chua, J. Xu, J. Mater. Chem. C 2015, 3, 5589.
- 32C. M. Cho, Q. Ye, W. T. Neo, T. Lin, X. Lu, J. Xu, Polym. Chem. 2015, 6, 7570.
- 33M. H. Chua, Q. Zhu, T. Tang, K. W. Shah, J. Xu, Sol. Energy Mater. Sol. Cells 2019, 197, 32.
- 34X. Lv, W. Li, M. Ouyang, Y. Zhang, D. S. Wright, C. Zhang, J. Mater. Chem. C 2017, 5, 12.
- 35G. Gunbas, L. Toppare, Chem. Commun. 2012, 48, 1083.
- 36B. He, W. T. Neo, T. L. Chen, L. M. Klivansky, H. Wang, T. Tan, S. J. Teat, J. Xu, Y. Liu, ACS Sustainable Chem. Eng. 2016, 4, 2797.
- 37Z. Shi, W. T. Neo, H. Zhou, J. Xu, Aust. J. Chem. 2016, 69, 403.
- 38C. M. Amb, A. L. Dyer, J. R. Reynolds, Chem. Mater. 2011, 23, 397.
- 39A. L. Dyer, E. J. Thompson, J. R. Reynolds, ACS Appl. Mater. Interfaces 2011, 3, 1787.
- 40S. Kirchmeyer, K. Reuter, J. Mater. Chem. 2005, 15, 2077.
- 41J. Kawahara, P. A. Ersman, I. Engquist, M. Berggren, Org. Electron. 2012, 13, 469.
- 42J.-T. Wu, T.-L. Hsiang, G.-S. Liou, J. Mater. Chem. C 2018, 6, 13345.
- 43J.-T. Wu, Y.-Z. Fan, G.-S. Liou, Polym. Chem. 2019, 10, 345.
- 44M. Ouyang, B. Hu, C. Zhang, Int. J. Mod. Phys.: Conf. Ser. 2012, 06, 144.
- 45K. Tsuchiya, T. Sakakura, K. Ogino, Macromolecules 2011, 44, 5200.
- 46C. Xu, J. Zhao, C. Cui, M. Wang, Y. Kong, X. Zhang, J. Electroanal. Chem. 2012, 682, 29.
- 47M. H. Chahma, J. B. Gilroy, R. G. Hicks, J. Mater. Chem. 2007, 17, 4768.
- 48S. Golba, O. Starczewska, K. Idzik, Des. Monomers Polym. 2015, 18, 770.
- 49J. H. Sim, K. Yamada, S. H. Lee, S. Yokokura, H. Sato, Synth. Met. 2007, 157, 940.
- 50H.-Y. Lin, G.-S. Liou, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 285.
- 51G. Kim, F. Basarir, T.-H. Yoon, Synth. Met. 2011, 161, 2092.
- 52A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, J. R. Reynolds, Chem. Mater. 1998, 10, 896