Synthesis of Polymeric Janus Superstructures via a Facile Synthesis Method
Yi Guang Jerome Lim
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorHui Ying Jessalyn Low
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Say Chye Joachim Loo
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorYi Guang Jerome Lim
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorHui Ying Jessalyn Low
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Say Chye Joachim Loo
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Polymeric Janus particles can be exploited for a myriad of applications. Through the understanding of interfacial tensions, theragnostic agents such as drugs or nanomaterials can be successfully encapsulated into Janus particles without losing their anisotropic structure. In this work, it is reported that how Janus superstructures, as a further extension of the Janus morphology, can be obtained by blending other synthesis parameters into the solvent emulsion process, while adhering to the requirements of the Harkin's spreading coefficient (HSC) theory. Designing such unique structures for drug delivery can provide a broader range of possibilities and applications beyond conventional Janus particles.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000140-sup-0001-SuppMat.pdf733.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Hwang, J. Lahann, Macromol. Rapid Commun. 2012, 33, 1178.
- 2M. Ito, R. Enomoto, K. Osawa, Y. Daiko, T. Yazawa, S. Fujii, Y. Yokoyama, Y. Miyanari, Y. Nakamura, A. Nakao, Polym. J. 2012, 44, 181.
- 3S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K. S. Schweizer, S. Granick, Adv. Mater. 2010, 22, 1060.
- 4R. Erhardt, M. Zhang, A. Böker, H. Zettl, C. Abetz, P. Frederik, G. Krausch, V. Abetz, A. H. Müller, J. Am. Chem. Soc. 2003, 125, 3260.
- 5A. Kumar, B. J. Park, F. Tu, D. Lee, Soft Matter 2013, 9, 6604.
- 6E. Passas-Lagos, F. Schuth, Langmuir 2015, 31, 7749.
- 7C.-H. Chen, R. K. Shah, A. R. Abate, D. A. Weitz, Langmuir 2009, 25, 4320.
- 8I. U. Khan, C. A. Serra, N. Anton, X. Li, R. Akasov, N. Messaddeq, I. Kraus, T. F. Vandamme, Int. J. Pharm. 2014, 473, 239.
- 9W. Li, H. Dong, G. Tang, T. Ma, X. Cao, RSC Adv. 2015, 5, 23181.
- 10T. Nisisako, Curr. Opin. Colloid Interface Sci. 2016, 25, 1.
- 11T. Feng, H. Tian, C. Xu, L. Lin, Z. Xie, M. H.-W. Lam, H. Liang, X. Chen, Eur. J. Pharm. Biopharm. 2014, 88, 1086.
- 12H. Xie, Z.-G. She, S. Wang, G. Sharma, J. W. Smith, Langmuir 2012, 28, 4459.
- 13A. Zenerino, C. Peyratout, A. Aimable, J. Colloid Interface Sci. 2015, 450, 174.
- 14P. J. Kelly, R. D. Arnell, Vacuum 2000, 56, 159.
- 15S. K. Sia, L. J. Kricka, Lab Chip 2008, 8, 1982.
- 16S.-Y. Teh, R. Lin, L.-H. Hung, A. P. Lee, Lab Chip 2008, 8, 198.
- 17G. M. Whitesides, Nature 2006, 442, 368.
- 18F. S. Romanski, J. S. Winkler, R. C. Riccobene, M. S. Tomassone, Langmuir 2012, 28, 3756.
- 19L. Ge, S. E. Friberg, R. Guo, Curr. Opin. Colloid Interface Sci. 2016, 25, 58.
- 20Y. L. Fan, C. H. Tan, Y. Lui, D. Zudhistira, S. C. J. Loo, RSC Adv. 2018, 8, 16032.
- 21Y. G. J. Lim, K. C. W. Poh, S. C. J. Loo, Macromol. Rapid Commun. 2019, 40, 1800801.
- 22I. Bala, S. Hariharan, M. R. Kumar, Crit. Rev. Ther. Drug Carrier Syst. 2004, 21, 387.
- 23F. D'Hermies, C. Hartmann, C. Holzkämper, G. Renard, Y. Pouliquen, Fortschr. Ophthalmol. 1991, 88, 790.
- 24C. Kazimoğlu, S. Bölükbaşi, U. Kanatli, A. Senköylü, N. Altun, C. Babac, H. Yavuz, E. Pişkin, Int. J. Artif. Organs 2003, 26, 804.
- 25A. F. Osman, A. M. Alakrach, H. Kalo, W. N. W. Azmi, F. Hashim, RSC Adv. 2015, 5, 31485.
- 26S. Kharel, W. L. Lee, X. Y. Lee, S. C. J. Loo, Macromol. Biosci. 2017, 17, 1600328.
- 27S. Seiffert, M. B. Romanowsky, D. A. Weitz, Langmuir 2010, 26, 14842.
- 28W. L. Lee, W. M. Guo, V. H. Ho, A. Saha, H. C. Chong, N. S. Tan, E. Widjaja, E. Y. Tan, S. C. J. Loo, Small 2014, 10, 3986.
- 29W. L. Lee, W. L. Foo, E. Widjaja, S. C. J. Loo, Acta Biomater. 2010, 6, 1342.
- 30W. L. Lee, C. Loei, E. Widjaja, S. C. J. Loo, J. Controlled Release 2011, 151, 229.
- 31W. L. Lee, Y. C. Seh, E. Widjaja, H. C. Chong, N. S. Tan, J. Loo, S. Chye, J. Pharm. Sci. 2012, 101, 2787.
- 32W. L. Lee, E. Widjaja, S. C. J. Loo, Small 2010, 6, 1003.
- 33L. Ge, H. Jin, X. Li, D. Wei, R. Guo, Langmuir 2019, 35, 3490.
- 34L. D. Zarzar, V. Sresht, E. M. Sletten, J. A. Kalow, D. Blankschtein, T. M. Swager, Nature 2015, 518, 520.
- 35Y. L. Khung, W. Li Lee, K. L. Chui, Y. Liu, M. P. Lim, C. L. Huang, S. C. J. Loo, Adv. Healthcare Mater. 2012, 1, 159.