Effect of Molecular Architecture on Conformational Relaxation of Polymer Chains at Interfaces
Hung K. Nguyen
Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Daisuke Kawaguchi
Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395 Japan
Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Keiji Tanaka
Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395 Japan
Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395 Japan
International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorHung K. Nguyen
Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Daisuke Kawaguchi
Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395 Japan
Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Keiji Tanaka
Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395 Japan
Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395 Japan
International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Dynamics of polymer chains near an interface with an inorganic material are believed to strongly affect the physical properties of polymers in nanocomposites and thin films. An effect of molecular architecture on the conformational relaxation behavior of polystyrene (PS) chains at the quartz interface using sum-frequency generation spectroscopy is reported here. The relaxation dynamics of chains in direct contact with the quartz interface is slower with a star-shaped architecture than that with its linear counterpart. The extent of the delay becomes more pronounced with increasing number of arms. This can be explained in terms of the superior interfacial activity to the quartz surface for the star-shaped PS.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1B. O'Shaughnessy, D. Vavylonis, J. Phys.: Condens. Matter 2005, 17, R63.
- 2Y. Fujii, Z. H. Yang, J. Leach, H. Atarashi, K. Tanaka, O. K. C. Tsui, Macromolecules 2009, 42, 7418.
- 3S. Napolitano, M. Wubbenhorst, Nat. Commun. 2011, 2, 260.
- 4P. Gin, N. Jiang, C. Liang, T. Taniguchi, B. Akgun, S. K. Satija, M. K. Endoh, T. Koga, Phys. Rev. Lett. 2012, 109, 265501.
- 5H. Tsuruta, Y. Fujii, N. Kai, H. Kataoka, T. Ishizone, M. Doi, H. Morita, K. Tanaka, Macromolecules 2012, 45, 4643.
- 6A. M. Jimenez, D. Zhao, K. Misquitta, J. Jestin, S. K. Kumar, ACS Macro Lett. 2019, 8, 166.
- 7H. Aoki, Polym. J. 2019, 51, 611.
- 8Y. Liu, K. Sakurai, Polym. J. 2019, 51, 1073.
- 9K. Tanaka, Y. Tsuchimura, K. Akabori, F. Ito, T. Nagamura, Appl. Phys. Lett. 2006, 89, 061916.
- 10K. Tanaka, Y. Tateishi, Y. Okada, T. Nagamura, M. Doi, H. Morita, J. Phys. Chem. B 2009, 113, 4571.
- 11A. Papon, H. Montes, M. Hanafi, F. Lequeux, L. Guy, K. Saalwachter, Phys. Rev. Lett. 2012, 108, 065702.
- 12C. Zhang, Y. Fujii, K. Tanaka, ACS Macro Lett. 2012, 1, 1317.
- 13N. S. Jiang, J. Shang, X. Y. Di, M. K. Endoh, T. Koga, Macromolecules 2014, 47, 2682.
- 14M. Sen, N. Jiang, J. Cheung, M. K. Endoh, T. Koge, D. Kawaguchi, K. Tanaka, ACS Macro Lett. 2016, 5, 504.
- 15A. Panagopoulou, S. Napolitano, Phys. Rev. Lett. 2017, 119, 097801.
- 16H. K. Nguyen, M. Inutsuka, D. Kawaguchi, K. Tanaka, J. Chem. Phys. 2017, 146, 203313.
- 17S. Cheng, B. Carroll, W. Lu, F. Fan, J.-M. Y. Carrillo, H. Martin, A. P. Holt, N.-G. Kang, V. Bocharova, J. W. Mays, B. G. Sumpter, M. Dadmun, A. P. Sokolov, Macromolecules 2017, 50, 2397.
- 18S. Sugimoto, M. Inutsuka, D. Kawaguchi, K. Tanaka, ACS Macro Lett. 2018, 7, 85.
- 19B. Zuo, M. Inutsuka, D. Kawaguch, X. P. Wang, K. Tanaka, Macromolecules 2018, 51, 2180.
- 20N. Jiang, M. Sen, M. K. Endoh, T. Koga, E. Langhammer, P. Bjöörn, M. Tsige, Langmuir 2018, 34, 4199.
- 21H. K. Nguyen, S. Sugimoto, A. Konomi, M. Inutsuka, D. Kawaguchi, K. Tanaka, ACS Macro Lett. 2019, 8, 1006.
- 22B. Zuo, H. Zhou, M. J. B. Davis, X. Wang, R. D. Priestley, Phys. Rev. Lett. 2019, 122, 217801.
- 23H. K. Nguyen, M. Labardi, M. Lucchesi, P. Rolla, D. Prevosto, Macromolecules 2013, 46, 555.
- 24M. J. Burroughs, S. Napolitano, D. Cangialosi, R. D. Priestley, Macromolecules 2016, 49, 4647.
- 25S. Sugimoto, M. Inutsuka, D. Kawaguchi, K. Tanaka, Polym. J. 2020, 52, 217.
- 26K. Adrjanowicz, M. Paluch, Phys. Rev. Lett. 2019, 122, 176101.
- 27S. M. Oh, M. Abbasi, T. J. Shin, K. Saalwächter, S. Y. Kim, Phys. Rev. Lett. 2019, 123, 167801.
- 28G. Reiter, S. Napolitano, J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 2544.
- 29Y. Ogata, T. Abe, S. Yonemori, N. L. Yamada, D. Kawaguchi, K. Tanaka, Langmuir 2018, 34, 15483.
- 30D. Nieto Simavilla, W. Huang, C. Housmans, M. Sferrazza, S. Napolitano, ACS Cent. Sci. 2018, 4, 755.
- 31M. Aoki, A. Shundo, K. Okamoto, T. Ganbe, K. Tanaka, Polym. J. 2019, 51, 359.
- 32S. Chandran, G. Reiter, ACS Macro Lett. 2019, 8, 646.
- 33E. Glynos, B. Frieberg, H. Oh, M. Liu, D. W. Gidley, P. F. Green, Phys. Rev. Lett. 2011, 106, 128301.
- 34E. Glynos, B. Frieberg, P. F. Green, Phys. Rev. Lett. 2011, 107, 118303.
- 35S. F. Wang, S. Yang, J. Lee, B. Akgun, D. T. Wu, M. D. Foster, Phys. Rev. Lett. 2013, 111, 068303.
- 36F. Zhang, Q. M. He, Y. Zhou, S. Narayanan, C. Wang, B. D. Vogt, M. D. Foster, ACS Macro Lett. 2018, 7, 834.
- 37Y. R. Shen, Nature 1989, 337, 519.
- 38K. S. Gautam, A. D. Schwab, A. Dhinojwala, D. Zhang, S. M. Dougal, M. S. Yeganeh, Phys. Rev. Lett. 2000, 85, 3854.
- 39Z. Chen, Y. R. Shen, G. A. Somorjai, Annu. Rev. Phys. Chem. 2002, 53, 437.
- 40X. Lu, C. Zhang, N. Ulrich, M. Xiao, Y.-H. Ma, Z. Chen, Anal. Chem. 2017, 89, 466.
- 41L. J. Fetters, N. Hadjichristidis, J. S. Lindner, J. W. Mays, J. Phys. Chem. Ref. Data 1994, 23, 619.
- 42A. D. Curtis, A. R. Calchera, M. C. Asplund, J. E. Patterson, Vib. Spectrosc. 2013, 68, 71.
- 43H. K. Nguyen, M. Inutsuka, D. Kawaguchi, K. Tanaka, ACS Macro Lett. 2018, 7, 1198.
- 44S. Shimomura, M. Inutsuka, K. Tajima, M. Nabika, S. Moritomi, H. Matsuno, K. Tanaka, Polym. J. 2016, 48, 949.
- 45Y. Hong, Y. Li, F. Wang, B. Zuo, X. Wang, L. Zhang, D. Kawaguchi, K. Tanaka, Macromolecules 2018, 51, 5620.
- 46H. Watanabe, Y. Matsumiya, T. Inoue, Macromolecules 2002, 35, 2339.
- 47H. Watanabe, S. Ishida, Y. Matsumiya, T. Inoue, Macromolecules 2004, 37, 6619.
- 48H. Watanabe, T. Sawada, Y. Matsumiya, Macromolecules 2006, 39, 2553.
- 49D. S. Li, J. F. Yang, J. Zhao, Chin. Chem. Lett. 2018, 29, 374.
- 50J. F. Joanny, A. Johner, J. Phys. II 1996, 6, 511.
- 51A. Striolo, J. M. Prausnitz, J. Chem. Phys. 2001, 114, 8565.
- 52A. Dang, C. M. Hui, R. Ferebee, J. Kubiak, T. Li, K. Matyjaszewski, M. R. Bockstaller, Macromol. Symp. 2013, 331-332, 9.
- 53A. P. Holt, V. Bocharova, S. Cheng, A. M. Kisliuk, B. T. White, T. Saito, D. Uhrig, J. P. Mahalik, R. Kumar, A. E. Imel, T. Etampawala, H. Martin, N. Sikes, B. G. Sumpter, M. D. Dadmun, A. P. Sokolov, ACS Nano 2016, 10, 6843.
- 54M. Inutsuka, A. Horinouchi, K. Tanaka, ACS Macro Lett. 2015, 4, 1174.
- 55S. Lee, W. Lee, N. L. Yamada, K. Tanaka, J. H. Kim, H. Lee, D. Y. Ryu, Macromolecules 2019, 52, 7524.