A sufficient condition for boundedness of maximal operator on weighted generalized Orlicz spaces
Corresponding Author
Vertti Hietanen
Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
Correspondence
Vertti Hietanen, Department of Mathematics and Statistics, University of Helsinki, FI-00014 Helsinki, Finland.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Vertti Hietanen
Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
Correspondence
Vertti Hietanen, Department of Mathematics and Statistics, University of Helsinki, FI-00014 Helsinki, Finland.
Email: [email protected]
Search for more papers by this authorAbstract
We prove that the Hardy–Littlewood maximal operator is bounded in the weighted generalized Orlicz space if the weight satisfies the classical Muckenhoupt condition and is almost increasing in addition to the standard conditions.
REFERENCES
- 1Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406.
- 2I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, Partial differential equations in anisotropic Musielak–Orlicz spaces, Springer, Cham, 2021, DOI 10.1007/978-3-030-88856-5.
10.1007/978-3-030-88856-5 Google Scholar
- 3M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443–496.
- 4D. Cruz-Uribe, L. Diening, and P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal. 14 (2011), no. 3, 361–374.
- 5D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, Birkhäuser, Basel, 2013.
10.1007/978-3-0348-0548-3 Google Scholar
- 6D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238, http://eudml.org/doc/123518.
- 7L. Diening, Maximal function on generalized Lebesgue spaces , Math. Inequal. Appl. 7 (2004), no. 2, 245–253.
- 8L. Diening and P. Hästö, Muckenhoupt weights in variable exponent spaces, (2008), Preprint, https://www.problemsolving.fi/pp/p75_submit.pdf.
- 9L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lect. Notes Math., vol. 2017, Springer, Heidelberg, 2011.
- 10C. D. Filippis and G. Mingione, Nonuniformly elliptic Schauder theory, Invent. Math. 234 (2023), 1109–1196.
10.1007/s00222-023-01216-2 Google Scholar
- 11D. Gallardo, Orlicz spaces for which the Hardy–Littlewood maximal operator is bounded, Publ. Mat. 32 (1988), no. 2, 261–266.
10.5565/PUBLMAT_32288_09 Google Scholar
- 12J. García-Cuerva and J. R. de Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, 1985.
- 13A. Gogatishvili and V. Kokilashvili, Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces, Georgian Math. J. 1 (1994), 641–673.
10.1007/BF02254684 Google Scholar
- 14P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lect. Notes Math., vol. 2236, Springer, Cham, 2019.
10.1007/978-3-030-15100-3 Google Scholar
- 15P. Harjulehto, P. Hästö, and A. Słabuszewski, A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains, Math. Nachr. 297 (2024), no. 9, 3184–3191.
10.1002/mana.202300416 Google Scholar
- 16P. Hästö, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (2015), no. 12, 4038–4048.
- 17P. Hästö and J. Ok, Maximal regularity for non-autonomous differential equations, J. Eur. Math. Soc. 24 (2022), no. 4, 1285–1334.
- 18V. Kokilashvili, N. Samko, and S. Samko, The maximal operator in weighted variable spaces , J. Funct. Spaces Appl. 5 (2007), 299–317.
- 19V. Kokilashvili, N. Samko, and S. Samko, Singular operators in variable spaces with oscillating weights, Math. Nachr. 280 (2007), 1145–1156.
- 20V. Kokilashvili and S. Samko, Maximal and fractional operators in weighted -spaces, Rev. Mat. Iberoam. 20 (2004), no. 2, 493–515.
- 21V. Kokilashvili and S. Samko, A general approach to weighted boundedness of operators of harmonic analysis in variable exponent Lebesgue spaces, Proc. Razmadze Math. Inst. 145 (2007), 109–116.
- 22F.-Y. Maeda, Y. Mizuta, T. Ohno, and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak–Orlicz–Morrey spaces, Bull. Sci. Math. 137 (2013), 76–96.
- 23B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- 24J. Musielak, Orlicz spaces and modular spaces, Lect. Notes Math., vol. 1034, Springer, Berlin, 1983.
- 25A. Nekvinda, Hardy–Littlewood maximal operator on , Math. Inequal. Appl. 7 (2004), 255–266.
- 26L. Pick and M. Růžička, An example of a space on which the Hardy–Littlewood maximal operator is not bounded, Expo. Math. 19 (2001), 369–371.
10.1016/S0723-0869(01)80023-2 Google Scholar
- 27A. Wróblewska-Kaminska, Existence result for the motion of several rigid bodies in an incompressible non-Newtonian fluid with growth conditions in Orlicz spaces, Nonlinearity 27 (2014), 685–716.
10.1088/0951-7715/27/4/685 Google Scholar