Partial Hölder regularity for asymptotically convex functionals with borderline double-phase growth
Wenrui Chang
Department of Mathematics, Beijing Jiaotong University, Beijing, China
Search for more papers by this authorCorresponding Author
Shenzhou Zheng
Department of Mathematics, Beijing Jiaotong University, Beijing, China
Correspondence
Shenzhou Zheng, Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China.
Email: [email protected]
Search for more papers by this authorWenrui Chang
Department of Mathematics, Beijing Jiaotong University, Beijing, China
Search for more papers by this authorCorresponding Author
Shenzhou Zheng
Department of Mathematics, Beijing Jiaotong University, Beijing, China
Correspondence
Shenzhou Zheng, Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China.
Email: [email protected]
Search for more papers by this authorAbstract
We study partial Hölder regularity of the local minimizers with to the integral functional in a bounded domain for . Under the assumption of asymptotically convex to the borderline double-phase functional
REFERENCES
- 1E. Acerbi and G. Mingione, Gradient estimates for the -Laplacean system, J. Reine Angew. Math. 2005 (2005), no. 584, 117–148.
10.1515/crll.2005.2005.584.117 Google Scholar
- 2F. Anceschi and T. Isernia, partial regularity result for elliptic systems with discontinuous coefficients and Orlicz growth, J. Math. Anal. Appl. 530 (2024), no. 1, 127628.
10.1016/j.jmaa.2023.127628 Google Scholar
- 3P. Baroni, M. Colombo, and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J. 27 (2016), no. 3, 347–379.
10.1090/spmj/1392 Google Scholar
- 4P. Baroni, M. Colombo, and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ. 57 (2018), 1–48.
- 5P. Baroni and A. Coscia, Gradient regularity for non-autonomous functionals with Dini or non-Dini continuous coefficients, Electron. J. Differ. Equ. 2022 (2022), 1–30.
- 6M. Bildhauer and M. Fuchs, -solutions to non-autonomous anisotropic variational problems, Calc. Var. Partial Differ. Equ. 24 (2005), 309–340.
- 7M. Chipot and L. C. Evans, Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. R. Soc. Lond. Ser. A 102 (1986), no. 3-4, 291–303.
- 8A. Coscia, Regularity for minimizers of double phase functionals with mild transition and regular coefficients, J. Math. Anal. Appl. 501 (2021), no. 1, 124569.
10.1016/j.jmaa.2020.124569 Google Scholar
- 9C. De Filippis and G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal. 30 (2020), 1661–1723.
- 10L. Diening, B. Stroffolini, and A. Verde, Everywhere regularity of functionals with -growth, Manuscripta Math. 129 (2009), 449–481.
- 11L. Esposito, F. Leonetti, and G. Mingione, Sharp regularity for functionals with growth, J. Differ. Equ. 204 (2004), no. 1, 5–55.
- 12L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Revised Edition, Chapman and Hall/CRC, Boca Raton, FL, 2015.
10.1201/b18333 Google Scholar
- 13K. Fey and M. Foss, Morrey regularity results for asymptotically convex variational problems with growth, J. Differ. Equ. 246 (2009), no. 12, 4519–4551.
10.1016/j.jde.2009.03.018 Google Scholar
- 14M. Foss and C. S. Goodrich, Partial Hölder continuity of minimizers of functionals satisfying a general asymptotic relatedness condition, J. Convex Anal. 22 (2015), 219–246.
- 15M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems, J. Reine Angew. Math. 311 (1979), 145–169.
- 16M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, Princeton, NJ, 1983.
- 17M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Springer Science & Business Media, Edizioni della Normale Pisa, 2012.
10.1007/978-88-7642-443-4 Google Scholar
- 18E. Giusti and M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni, Boll. Unione Mat. Ital. 1 (1968), 219–226.
- 19E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co. Inc, River Edge, 2003.
10.1142/5002 Google Scholar
- 20C. S. Goodrich, Partial Hölder continuity of minimizers of functionals satisfying a VMO condition, Adv. Calc. Var. 10 (2017), no. 1, 83–110.
10.1515/acv-2015-0013 Google Scholar
- 21C. S. Goodrich, Partial Lipschitz regularity of minimizers of asymptotically convex functionals with general growth conditions, J. Differ. Equ. 263 (2017), no. 7, 4400–4428.
10.1016/j.jde.2017.05.017 Google Scholar
- 22C. S. Goodrich and A. Scapellato, Partial regularity of minimizers of asymptotically convex functionals with -growth, Stud. Math. 264 (2022), 71–102.
10.4064/sm210104-20-9 Google Scholar
- 23P. Harjulehto and P. Hästö, Double phase image restoration, J. Math. Anal. Appl. 501 (2021), no. 1, 123832.
- 24T. Kilpeläinen and J. Malỳ, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. 19 (1992), no. 4, 591–613.
- 25S. Liang and S. Zheng, Gradient estimate for asymptotically regular elliptic equations of double phase with variable exponents, Math. Nachr. 296 (2023), no. 2, 701–715.
- 26P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267–284.
- 27C. B. Morrey, Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1968), no. 7, 649–670.
- 28J. Ok, Partial Hölder regularity for elliptic systems with non-standard growth, J. Funct. Anal. 274 (2018), no. 3, 723–768.
- 29J. Ok, Partial regularity for general systems of double phase type with continuous coefficients, Nonlinear Anal. 177 (2018), 673–698.
10.1016/j.na.2018.03.021 Google Scholar
- 30J. P. Raymond, Lipschitz regularity of solutions of some asymptotically convex problems, Proc. R. Soc. Lond. Ser. A 117 (1991), no. 1-2, 59–73.
- 31M. Růžička, Electrorheological fluids: modeling and mathematical theory, Springer-Verlag, Berlin, 2002.
- 32A. Tachikawa, Partial regularity of minimizers for double phase functionals with variable exponents, Nonlinear Differ. Equations Appl. 31 (2024), no. 2, 24.
10.1007/s00030-023-00919-y Google Scholar
- 33S. Zheng, Partial regularity for quasi-linear elliptic systems with VMO coefficients under the natural growth, Chinese Ann. Math. Ser. A 29 (2008), no. 1, 49–58.
- 34V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv. 29 (1987), no. 1, 33.
10.1070/IM1987v029n01ABEH000958 Google Scholar
- 35V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 435–439.