Weighted Bourgain–Morrey-Besov–Triebel–Lizorkin spaces associated with operators
Tengfei Bai
College of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan, China
Search for more papers by this authorCorresponding Author
Jingshi Xu
School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, China
Center for Applied Mathematics of Guangxi (GUET), Guilin, China
Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin, China
Correspondence
Jingshi Xu, School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China.
Email: [email protected]
Search for more papers by this authorTengfei Bai
College of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan, China
Search for more papers by this authorCorresponding Author
Jingshi Xu
School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, China
Center for Applied Mathematics of Guangxi (GUET), Guilin, China
Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin, China
Correspondence
Jingshi Xu, School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China.
Email: [email protected]
Search for more papers by this authorAbstract
Let be a space of homogeneous type and be a nonnegative self-adjoint operator on satisfying a Gaussian upper bound on its heat kernel. First, we obtain the boundedness of the Hardy–Littlewood maximal function and its variant on weighted Bourgain–Morrey spaces. The Hardy-type inequality on sequence Bourgain–Morrey spaces are also given. Then, we introduce the weighted homogeneous Bourgain–Morrey Besov spaces and Triebel–Lizorkin spaces associated with the operator . We obtain characterizations of these spaces in terms of Peetre maximal functions, noncompactly supported functional calculus, and heat kernel. Atomic decompositions and molecular decompositions of weighted homogeneous Bourgain–Morrey Besov spaces and Triebel–Lizorkin spaces are also proved. Finally, we apply our results to prove the boundedness of the fractional power of and the spectral multiplier of on Bourgain–Morrey Besov and Triebel–Lizorkin spaces.
REFERENCES
- 1H.-Q. Bui, T. A. Bui, and X. T. Duong, Weighted Besov and Triebel–Lizorkin spaces associated with operators and applications, Forum Math. Sigma 8 (2020), 95.
10.1017/fms.2020.6 Google Scholar
- 2H.-Q. Bui, X. T. Duong, and L. Yan, Calderón reproducing formulas and new Besov spaces associated with operators, Adv. Math. 229 (2012), no. 4, 2449–2502.
10.1016/j.aim.2012.01.005 Google Scholar
- 3H.-Q. Bui, M. Paluszyński, and M. Taibleson, A note on the Besov–Lipschitz and Triebel–Lizorkin spaces, Harmonic analysis and operator theory. A conference in honor of Mischa Cotlar, January 3–8, 1994, Caracas, Venezuela. Proceedings, Providence, RI: American Mathematical Society, 1995, pp. 95–101.
- 4H.-Q. Bui, M. Paluszyński, and M. Taibleson, Characterization of the Besov–Lipschitz and Triebel–Lizorkin spaces. The case , J. Fourier Anal. Appl. 3 (1997), 837–846.
- 5H.-Q. Bui, M. Paluszyński, and M. H. Taibleson, A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces, Stud. Math. 119 (1996), no. 3, 219–246.
- 6H.-Q. Bui and M. H. Taibleson, The characterization of the Triebel–Lizorkin spaces for , J. Fourier Anal. Appl. 6 (2000), no. 5, 537–550.
10.1007/BF02511545 Google Scholar
- 7T. A. Bui and X. T. Duong, Besov and Triebel–Lizorkin spaces associated to Hermite operators, J. Fourier Anal. Appl. 21 (2015), no. 2, 405–448.
10.1007/s00041-014-9378-6 Google Scholar
- 8T. A. Bui and X. T. Duong, Laguerre operator and its associated weighted Besov and Triebel–Lizorkin spaces, Trans. Am. Math. Soc. 369 (2017), no. 3, 2109–2150.
10.1090/tran/6745 Google Scholar
- 9T. A. Bui, X. T. Duong, and F. K. Ly, Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type, Trans. Am. Math. Soc. 370 (2018), no. 10, 7229–7292.
- 10A. P. Calderón, Intermediate spaces and interpolation, the complex method, Stud. Math. 24 (1964), 113–190.
10.4064/sm-24-2-113-190 Google Scholar
- 11M. Christ, A theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628.
10.4064/cm-60-61-2-601-628 Google Scholar
- 12R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.), Lect. Notes Math., vol. 242, Springer, Cham, 1971, https://doi.org/10.1007/BFb0058946.
10.1007/BFb0058946 Google Scholar
- 13T. Coulhon, G. Kerkyacharian, and P. Petrushev, Heat kernel generated frames in the setting of Dirichlet spaces, J. Fourier Anal. Appl. 18 (2012), no. 5, 995–1066.
- 14D. V. Cruz-Uribe and P. Shukla, The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type, Stud. Math. 242 (2018), no. 2, 109–139.
- 15P. D'Ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Anal. 227 (2005), no. 1, 30–77.
- 16M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799.
- 17M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170.
- 18A. G. Georgiadis, G. Kerkyacharian, G. Kyriazis, and P. Petrushev, Homogeneous Besov and Triebel–Lizorkin spaces associated to non-negative self-adjoint operators, J. Math. Anal. Appl. 449 (2017), no. 2, 1382–1412.
10.1016/j.jmaa.2016.12.049 Google Scholar
- 19A. G. Georgiadis, G. Kerkyacharian, G. Kyriazis, and P. Petrushev, Atomic and molecular decomposition of homogeneous spaces of distributions associated to non-negative self-adjoint operators, J. Fourier Anal. Appl. 25 (2019), no. 6, 3259–3309.
10.1007/s00041-019-09702-z Google Scholar
- 20L. Grafakos, Classical Fourier analysis, Grad. Texts Math., vol. 249, 3rd ed., Springer, New York, NY 2014, https://doi.org/10.1007/978-1-4939-1194-3.
10.1007/978-1-4939-1194-3 Google Scholar
- 21L. Grafakos, L. Liu, and D. Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), no. 2, 296–310.
- 22N. Hatano, Y. Sawano, T. Nogayama, and D. V. Hakim, Bourgain–Morrey spaces and their applications to boundedness of operators, J. Funct. Anal. 284 (2023), no. 1, 52.
10.1016/j.jfa.2022.109720 Google Scholar
- 23G. Kerkyacharian and P. Petrushev, Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces, Trans. Am. Math. Soc. 367 (2015), no. 1, 121–189.
10.1090/S0002-9947-2014-05993-X Google Scholar
- 24G. Kerkyacharian, Decomposition of Triebel–Lizorkin and Besov spaces in the context of Laguerre expansions, J. Funct. Anal. 256 (2009), no. 4, 1137–1188.
10.1016/j.jfa.2008.09.015 Google Scholar
- 25L. Liu, D. Yang, and W. Yuan, Besov-type and Triebel–Lizorkin-type spaces associated with heat kernels, Collect. Math. 67 (2016), no. 2, 247–310.
10.1007/s13348-015-0142-2 Google Scholar
- 26S. Masaki and J.-i. Segata, Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation, Ann. Inst. Henri Poincaré. 35 (2018), no. 2, 283–326.
10.1016/j.anihpc.2017.04.003 Google Scholar
- 27F. Merle and L. Vega, Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not. 1998 (1998), no. 8, 399–425.
10.1155/S1073792898000270 Google Scholar
- 28A. Moyua, A. Vargas, and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in , Duke Math. J. 96 (1999), no. 3, 547–574.
- 29J. Peetre, On spaces of Triebel–Lizorkin type, Ark. Mat. 13 (1975), 123–130.
- 30J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., vol. 1, Mathematics Department, Duke University, Durham, NC, 1976.
- 31P. Petrushev and Y. Xu, Decomposition of spaces of distributions induced by Hermite expansions, J. Fourier Anal. Appl. 14 (2008), no. 3, 372–414.
10.1007/s00041-008-9019-z Google Scholar
- 32J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lect. Notes Math., vol. 1381, Springer-Verlag, Berlin, 1989, https://doi.org/10.1007/BFb0091154.
- 33H. Triebel, Theory of function spaces. I, Monogr. Math., vol. 78, Birkhäuser, Cham, 1983.
10.1007/978-3-0346-0416-1 Google Scholar
- 34H. Triebel, Theory of function spaces. II, Monogr. Math., vol. 84, Birkhäuser Verlag, Cham, 1992.
10.1007/978-3-0346-0419-2 Google Scholar
- 35D. Yang and S. Yang, Musielak–Orlicz–Hardy spaces associated with operators and their applications, J. Geom. Anal. 24 (2014), no. 1, 495–570.
- 36D. Yang and W. Yuan, Pointwise characterizations of Besov and Triebel–Lizorkin spaces in terms of averages on balls, Trans. Am. Math. Soc. 369 (2017), no. 11, 7631–7655.
10.1090/tran/6871 Google Scholar