Approximation of skew Brownian motion by snapping-out Brownian motions
Adam Bobrowski
Department of Mathematics, Lublin University of Technology, Nadbystrzycka, Lublin, Poland
Search for more papers by this authorCorresponding Author
Elżbieta Ratajczyk
Department of Mathematics, Lublin University of Technology, Nadbystrzycka, Lublin, Poland
Correspondence
Elżbieta Ratajczyk, Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland.
Email: [email protected]
Search for more papers by this authorAdam Bobrowski
Department of Mathematics, Lublin University of Technology, Nadbystrzycka, Lublin, Poland
Search for more papers by this authorCorresponding Author
Elżbieta Ratajczyk
Department of Mathematics, Lublin University of Technology, Nadbystrzycka, Lublin, Poland
Correspondence
Elżbieta Ratajczyk, Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland.
Email: [email protected]
Search for more papers by this authorAbstract
We elaborate on the theorem saying that as permeability coefficients of snapping-out Brownian motions tend to infinity in such a way that their ratio remains constant, these processes converge to a skew Brownian motion. In particular, convergence of the related semigroups, cosine families, and projections is discussed.
REFERENCES
- 1S. S. Andrews, Accurate particle-based simulation of adsorption, desorption and partial transmission, Phys. Biol. 6 (2010), 046015.
10.1088/1478-3975/6/4/046015 Google Scholar
- 2W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued laplace transforms and cauchy problems, Birkhäuser, Basel, 2001.
10.1007/978-3-0348-5075-9 Google Scholar
- 3J. Banasiak, M. Lachowicz, Methods of small parameter in mathematical biology, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2014.
10.1007/978-3-319-05140-6 Google Scholar
- 4G. Basile, T. Komorowski, and S. Olla, Diffusion limit for a kinetic equation with a thermostatted interface, Kinet. Relat. Models 12 (2019), no. 5, 1185–1196.
- 5A. Bobrowski, The Widder-Arendt theorem on inverting of the Laplace transform, and its relationships with the theory of semigroups of operators, Methods Funct. Anal. Topology 3 (1997), no. 4, 1–39.
- 6A. Bobrowski, A note on convergence of semigroups, Ann. Polon. Math. 69 (1998), no. 2, 107–127.
10.4064/ap-69-2-107-127 Google Scholar
- 7A. Bobrowski, Emergence of Freidlin–Wentzell's transmission conditions as a result of a singular perturbation of a semigroup, Semigroup Forum 92 (2015), no. 1, 1–22.
10.1007/s00233-015-9729-x Google Scholar
- 8A. Bobrowski, Families of operators describing diffusion through permeable membranes, Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, W. Arendt, R. Chill, Y. Tomilov, eds., vol. 250, Birkhäauser/Springer, Cham, 2015, pp. 87–105.
- 9A. Bobrowski, Convergence of one-parameter operator semigroups. In Models of Mathematical Biology and Elsewhere, New Mathematical Monographs, vol. 30, Cambridge University Press, Cambridge, 2016.
- 10A. Bobrowski and W. Chojnacki, Cosine families and semigroups really differ, J. Evol. Equ. 13 (2013), no. 4, 897–916.
- 11A. Bobrowski and T. Komorowski, Diffusion approximation for a simple kinetic model with asymmetric interface, J. Evol. Equ. 22 (2022), no. 42, 26
- 12A. Bobrowski and K. Morawska, From a PDE model to an ODE model of dynamics of synaptic depression, Discrete Contin. Dyn. Syst. B 17 (2012), no. 7, 2313–2327.
- 13A. Bobrowski and E. Ratajczyk, Pairs of complementary transmission conditions for Brownian motion, Math. Ann. 388 (2024), no. 4, 4317–4342.
- 14A. Bobrowski and R. Rudnicki, On convergence and asymptotic behaviour of semigroups of operators, Philos. Trans. Roy. Soc. A 378 (2020), no. 2185, 20190613.
- 15P. C. Bressloff, Two-dimensional interfacial diffusion model of inhibitory synaptic receptor dynamics, Proc. A. 479 (2023), no. 19, 20220831.
- 16P. C. Bressloff, A probabilistic model of diffusion through a semi-permeable barrier, Proc. A. 478 (2022), no. 2268.
- 17J. Crank, The mathematics of diffusion, 2nd ed., Clarendon Press, Oxford, 1975.
- 18A. Di Crescenzo, B. Martinucci, P. Paraggio, and Z. Shelemyahu, Some results on the telegraph process confined by two non-standard boundaries, Methodol. Comput. Appl. Probab. 23 (2021), 837–858.
- 19A. Di Crescenzo, B. Martinucci, and S. Zacks, Telegraph process with elastic boundary at the origin, Methodol. Comput. Appl. Probab. 20 (2017), no. 4, 333–352.
- 20K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Springer, New York, 2000.
- 21W. Feller, An introduction to probability theory and its applications, vol. 2, Wiley, New York, 1966. 2nd ed., 1971.
- 22E. Fieremans, D. S. Novikov, J. H. Jensen, and J. A. Helpern, Monte Carlo study of a two-compartment exchange model of diffusion, NMR Biomed. 23 (2010), 711–724.
- 23M. I. Freidlin and A. D. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Math. 21 (1993), 2215–2245.
- 24M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer, Heidelberg, 2012. Translated from the 1979 Russian original by Joseph Szücs.
10.1007/978-3-642-25847-3 Google Scholar
- 25J. A. Goldstein, Semigroups of linear operators and applications, Oxford University Press, New York, 1985.
- 26B. Hennig and F. Neubrander, On representations, inversions and approximations of Laplace transform in Banach spaces, Appl. Anal. 49 (1993), 151–170.
10.1080/00036819108840171 Google Scholar
- 27K. Itô and H. P. McKean Jr., Diffusion processes and their sample paths, Springer, Berlin, 1996. Repr. of the 1974 Ed.
10.1007/978-3-642-62025-6 Google Scholar
- 28O. Kallenberg, Foundations of modern probability, 2nd ed., Springer, 2002.
10.1007/978-1-4757-4015-8 Google Scholar
- 29I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Springer, New York, 1991.
10.1007/978-1-4612-0949-2 Google Scholar
- 30J. Kisyński, The Widder spaces, representations of the convolution algebra and one parameter semigroups of operators, Institute of Mathematics, Polish Academy of Sciences, Preprint 588, pp. 1–36, 1998.
- 31T. Komorowski and S. Olla, Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat, J. Funct. Anal. 279 (2020), no. 12, 108764, 60 pp.
- 32T. Komorowski, S. Olla, and L. Ryzhik, Fractional diffusion limit for a kinetic equation with an interface, Ann. Probab. 48 (2020), no. 5, 2290–2322
- 33T. Komorowski, S. Olla, L. Ryzhik, and H. Spohn, High frequency limit for a chain of harmonic oscillators with a point Langevin thermostat, Arch. Ration. Mech. Anal. 237 (2020), no. 1, 497–543.
- 34T. G. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc. 148 (1970), 23–32.
- 35S. Lang, Real and functional analysis, 3rd ed., Graduate Texts in Mathematics, vol. 142, Springer-Verlag, New York, 1993.
10.1007/978-1-4612-0897-6 Google Scholar
- 36A. Lejay, On the constructions of the skew Brownian motion, Probab. Surv. 3 (2006), 413–466.
10.1214/154957807000000013 Google Scholar
- 37A. Lejay, The snapping out Brownian motion, Ann. Appl. Probab. 3 (2016), 1727–1742.
- 38V. Mandrekar and A. Pilipenko, On a Brownian motion with a hard membrane, Stat. Probab. Lett. 113 (2016), 62–70.
- 39R. Mansuy and M. Yor, Aspects of Brownian motion, Universitext, Springer-Verlag, Berlin, 2008.
10.1007/978-3-540-49966-4 Google Scholar
- 40J. R. Mika and J. Banasiak, Singularly perturbed equations with applications to kinetic theory, Series on Advances in Mathematics for Applied Sciences, vol. 34, World Scientific, Singapore, 1995.
10.1142/2621 Google Scholar
- 41A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
10.1007/978-1-4612-5561-1 Google Scholar
- 42N. I. Portenko, Generalized diffusion processes, Proceedings of the Third Japan—USSR Symposium on Probability Theory, G. Maruyama and Ju. V. Prohorov, eds., Springer, Berlin-New York 1976, pp. 500–523.
- 43N. I. Portenko, Generalized diffusion processes, Translations of Mathematical Monographs, vol. 83, American Mathematical Society, Providence, RI, 1990.
10.1090/mmono/083 Google Scholar
- 44J. G. Powles, M. J. D. Mallett, G. Rickayzen, and W. A. B. Evans, Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers, Proc. Roy. Soc. Lond. Ser. A 436 (1992), no. 1897, 391–403.
10.1098/rspa.1992.0025 Google Scholar
- 45J. E. Tanner, Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient, J. Chem. Phys. 69 (1978), no. 4, 1748–1754.
- 46J. B. Walsh, A diffusion with a discontinuous local time, Temps locaus, Astérisque 52,53 (1978), 37–45.
- 47M. Yor, Some Aspects of Brownian motion. Part II: Some recent martingale problems, Lectures in Mathematics ETH Zürich, BirkhÄuser Verlag, Basel, 1997.
10.1007/978-3-0348-8954-4 Google Scholar