Seshadri constants on blow-ups of Hirzebruch surfaces
Krishna Hanumanthu
Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam, Tamil Nadu, India
Search for more papers by this authorCyril J. Jacob
Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
B. N. Suhas
Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam, Tamil Nadu, India
Correspondence
B. N. Suhas, Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam 603103, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorAmit Kumar Singh
Department of Mathematics, SRM University AP, Amaravati, Andhra Pradesh, India
Search for more papers by this authorKrishna Hanumanthu
Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam, Tamil Nadu, India
Search for more papers by this authorCyril J. Jacob
Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
B. N. Suhas
Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam, Tamil Nadu, India
Correspondence
B. N. Suhas, Chennai Mathematical Institute, H1 SIPCOT IT Park, Siruseri, Kelambakkam 603103, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorAmit Kumar Singh
Department of Mathematics, SRM University AP, Amaravati, Andhra Pradesh, India
Search for more papers by this authorAbstract
Let be integers and let denote the Hirzebruch surface with invariant . We compute the Seshadri constants of an ample line bundle at an arbitrary point of the -point blow-up of when and at a very general point when or . We also discuss several conjectures on linear systems of curves on the blow-up of at very general points.
REFERENCES
- 1T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen, W. Syzdek, and T. Szemberg, A primer on Seshadri constants, Contemp. Math. 496 (2009), 33–70.
10.1090/conm/496/09718 Google Scholar
- 2A. Beauville, Complex algebraic surface, Cambridge University Press, 1983.
- 3J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990), Lect. Notes Math., vol. 1507, Springer-Verlag, 1992, pp. 87–104.
10.1007/BFb0094512 Google Scholar
- 4M. Dumnicki, Special homogeneous linear systems on Hirzebruch surfaces, Geom. Dedicata 147 (2010), 283–311.
- 5M. Dumnicki, A. Küronya, C. Maclean, and T. Szemberg, Rationality of Seshadri constants and the Segre–Harbourne–Gimigliano–Hirschowitz conjecture, Adv. Math. 303 (2016), 1162–1170.
10.1016/j.aim.2016.05.025 Google Scholar
- 6L. Ein and R. Lazarsfeld, Seshadri constants on smooth surfaces, Journées de Géométrie Algébrique d’Orsay (Orsay, 1992), Astérisque No. 218 (1993), 177–186.
- 7Ł. Farnik, K. Hanumanthu, J. Huizenga, D. Schmitz and T. Szemberg, Rationality of Seshadri constants on general blow ups of , J. Pure Appl. Algebra 224 (2020), no. 8, 106345.
10.1016/j.jpaa.2020.106345 Google Scholar
- 8L. F. García, Seshadri constants on ruled surfaces: the rational and the elliptic cases, Manuscripta Math. 119 (2006), no. 4, 483–505.
10.1007/s00229-006-0629-y Google Scholar
- 9L. F. García, Cyclic coverings and Seshadri constants on smooth surfaces, Forum Math. 20 (2008), 433–444.
10.1515/FORUM.2008.021 Google Scholar
- 10A. Gimigliano, On linear system of plane curves, ProQuest LLC, Ann Arbor, MI, 1987.
- 11K. Hanumanthu and B. Harbourne, Single point Seshadri constants on rational surfaces, J. Algebra 499 (2018), 37–42.
10.1016/j.jalgebra.2017.11.040 Google Scholar
- 12B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, vol. 6, 1986, pp. 95–111.
- 13R. Hartshorne, Ample subvarieties of algebraic varieties, Lect. Notes in Math., vol. 156, Springer, 1970.
10.1007/BFb0067839 Google Scholar
- 14R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977.
10.1007/978-1-4757-3849-0 Google Scholar
- 15A. Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles génériques, J. Reine Angew. Math. 397 (1989), 208–213.
10.1515/crll.1989.397.208 Google Scholar
- 16J. Kollár, Shafarevich maps and automorphic forms, Princeton University Press, Princeton, NJ, 1995.
10.1515/9781400864195 Google Scholar
- 17A. Laface, On linear systems of curves on rational scrolls, Geom. Dedicata 90 (2002), 127–144.
- 18M. Lahyane and B. Harbourne, Irreducibility of -classes on anticanonical rational surfaces and finite generation of the effective monoid, Pacific J. Math. 218 (2005), 101–114.
10.2140/pjm.2005.218.101 Google Scholar
- 19J.-H. Lee and Y. Shin, Blown-up Hirzebruch surfaces and special divisor classes, Mathematics 8 (2020), no. 6, 867.
10.3390/math8060867 Google Scholar
- 20J. B. F. Medina and M. Lahyane, The effective monoids of the blow-ups of Hirzebruch surfaces at points in general position, Rend. Circ. Mat. Palermo Ser. 2. 70 (2020), 167–197.
10.1007/s12215-020-00489-3 Google Scholar
- 21M. Nakamaye, Seshadri constants and the geometry of surfaces, J. Reine Angew. Math. 564 (2003), 205–214.
- 22T. Sano, Seshadri constants on surfaces with anti-canonical pencils, J. Pure Appl. Algebra 218 (2014), 602–617.
10.1016/j.jpaa.2013.07.007 Google Scholar
- 23B. Segre, Alcune questioni su insiemi finiti di punti in geometria algebrica, Atti Convegno Internaz. Geometria Algebrica (1961), 15–33.
- 24W. Syzdek, Seshadri constants and geometry of surfaces, Ph.D. thesis, University of Duisberg-Essen, 2005.