Schrödinger–Poisson systems with zero mass in the Sobolev limiting case
Corresponding Author
Giulio Romani
Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Varese, Italy
RISM-Riemann International School of Mathematics, Varese, Italy
Correspondence
Giulio Romani, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Varese, Italy.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Giulio Romani
Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Varese, Italy
RISM-Riemann International School of Mathematics, Varese, Italy
Correspondence
Giulio Romani, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Varese, Italy.
Email: [email protected]
Search for more papers by this authorAbstract
We study the existence of positive solutions for a class of systems which strongly couple a quasilinear Schrödinger equation driven by a weighted -Laplace operator and without the mass term, and a higher-order fractional Poisson equation. Since the system is set in , the limiting case for the Sobolev embedding, we consider nonlinearities with exponential growth. Existence is proved relying on the study of a corresponding Choquard equation in which the Riesz kernel is a logarithm, hence sign-changing and unbounded from above and below. This is in turn solved by means of a variational approximating procedure for an auxiliary Choquard equation, where the logarithm is uniformly approximated by polynomial kernels. Our results are new even in the planar case .
REFERENCES
- 1F. S. B. Albuquerque, M. C. Ferreira, and U. B. Severo, Ground state solutions for a nonlocal equation in involving vanishing potentials and exponential critical growth, Milan J. Math. 89 (2021), 263–294.
- 2C. O. Alves, D. Cassani, C. Tarsi, and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in , J. Differ. Equ. 261 (2016), no. 3, 1933–1972.
- 3C. O. Alves and G. Figueiredo, Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth, J. Math. Phys. 60 (2019), no. 1, 011503.
- 4C. O. Alves, M. A. S. Souto, and M. Montenegro, Existence of solution for two classes of elliptic problems in with zero mass, J. Differ. Equ. 252 (2012), no. 10, 5735–5750.
- 5C. O. Alves and J. Yang, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math. 86 (2018), no. 2, 329–342.
- 6A. Azzollini and A. Pomponio, On a “zero mass” nonlinear Schrödinger equation, Adv. Nonlinear Stud. 7 (2007), no. 4, 599–627.
- 7V. Benci and D. Fortunato, Variational methods in nonlinear field equations, Springer, 2014.
10.1007/978-3-319-06914-2 Google Scholar
- 8H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.
- 9D. Bonheure, S. Cingolani, and J. Van Schaftingen, The logarithmic Choquard equation: sharp asymptotics and nondegeneracy of the groundstate, J. Funct. Anal. 272 (2017), no. 12, 5255–5281.
- 10C. D. Bucur, D. Cassani, and C. Tarsi, Quasilinear logarithmic Choquard equations with exponential growth in , J. Differ. Equ. 328 (2022), 261–294.
- 11E. de S. Böer and O. H. Miyagaki, The Choquard logarithmic equation involving a nonlinearity with exponential growth, Topol. Methods Nonlinear Anal. 60 (2022), no. 1, 363–385.
- 12E. de S. Böer and O. H. Miyagaki, -Choquard logarithmic equation involving a nonlinearity with exponential critical growth: existence and multiplicity, 2021, https://arxiv.org/pdf/2105.11442.pdf.
- 13J. L. Carvalho, E. Medeiros, and B. Ribeiro, On a planar Choquard equation involving exponential critical growth, Z. Angew. Math. Phys. 72 (2021), no. 6, 188.
- 14D. Cassani, L. Du, and Z. Liu, Positive solutions to the planar Choquard equation via asymptotic approximation, Nonlinear Anal. 241 (2024), 113479.
- 15D. Cassani, Z. Liu, and G. Romani, Nonlocal planar Schrödinger–Poisson systems in the fractional Sobolev limiting case, J. Differ. Equ. 383 (2024), 214–269.
- 16D. Cassani, Z. Liu, and G. Romani, Nonlocal Schrödinger–Poisson systems in : the fractional Sobolev limiting case, Accepted for publication in Rend. Istit. Mat. Univ. Trieste. 2023, https://arxiv.org/pdf/2311.13424.pdf.
- 17D. Cassani and C. Tarsi, Schrödinger–Newton equations in dimension two via a Pohozaev–Trudinger log-weighted inequality, Calc. Var. Partial Differ. Equ. 60 (2021), no. 5, 197.
- 18D. Cassani, J. Van Schaftingen, and J. Zhang, Groundstates for Choquard -type equations with Hardy–Littlewood–Sobolev lower critical exponent, Proc. R. Soc. Edinb. A 150 (2020), 1377–1400.
- 19D. Cassani and J. Zhang, Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth, Adv. Nonlinear Anal. 8 (2019), 1184–1212.
- 20S. Chen, M. Shu, X. Tang, and L. Wen, Planar Schrödinger–Poisson system with critical exponential growth in the zero mass case, J. Differ. Equ. 327 (2022), 448–480.
- 21S. Chen and X. Tang, On the planar Schrödinger–Poisson system with zero mass and critical exponential growth, Adv. Differ. Equ. 25 (2020), no. 11–12, 687–708.
- 22S. Cingolani and T. Weth, On the planar Schrödinger–Poisson system, Ann. Inst. H. PoincaréC Anal. Non Linéaire 33 (2016), no. 1, 169–197.
- 23S. Cingolani and T. Weth, Trudinger–Moser-type inequality with logarithmic convolution potentials, J. Lond. Math. Soc. (2) 105 (2022), no. 3, 1897–1935.
- 24J. C. de Albuquerque and J. L. Carvalho, Quasilinear equation with critical exponential growth in the zero mass case, Nonlinear Anal. 232 (2023), 113286.
- 25J. C. de Albuquerque, J. L. Carvalho, and A. P. F. Souza Filho, On a quasilinear logarithmic N -dimensional equation involving exponential growth, J. Math. Anal. Appl. 519 (2023), no. 1, 126751.
- 26D. de Figueiredo, O. Miyagaki, and B. Ruf, Elliptic equations in with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ. 3 (1995), 139–153.
- 27M. Du and T. Weth, Ground states and high energy solutions of the planar Schrödinger–Poisson system, Nonlinearity 30 (2017), no. 9, 3492–3515.
- 28N. Dunford and J. T. Schwartz, Linear operators. I. General theory, Pure Appl. Math., vol. 7, Interscience Publishers, Inc., New York, 1958.
- 29I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer, 1990.
10.1007/978-3-642-74331-3 Google Scholar
- 30G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011.
10.1007/978-0-387-09620-9 Google Scholar
- 31B. Gidas, Euclidean Yang–Mills and related equations, Bifurcation phenomena in mathematical physics and related topics (Proc. NATO Advanced Study Inst., Cargèse, 1979), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 54, Reidel, Dordrecht, 1980.
10.1007/978-94-009-9004-3_15 Google Scholar
- 32A. Hyder, Structure of conformal metrics on with constant -curvature, Differ. Integral Equ. 32 (2019), no. 7–8, 423–454.
- 33Q. Li and Z. Yang, Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in , Complex Var. Elliptic Equ. 61 (2016), no. 7, 969–983.
- 34E. H. Lieb and M. Loss, Analysis, 2nd ed., Graduate studies in mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001.
10.1090/gsm/014 Google Scholar
- 35Z. Liu, V. D. Rădulescu, and J. Zhang, A planar Schrödinger–Newton system with Trudinger–Moser critical growth, Calc. Var. P.D.E. 62 (2023), 31.
- 36Z. Liu, V. D. Rădulescu, C. Tang, and J. Zhang, Another look at planar Schrödinger–Newton systems, J. Differ. Equ. 328 (2022), 65–104.
- 37V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184.
- 38V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017), 773–813.
- 39P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differ. Equ. 196 (2004), no. 1, 1–66.
- 40G. Romani, Choquard equations with critical exponential nonlinearities in the zero mass case, Accepted for publication in AIMS Math. 2024, https://arxiv.org/pdf/2404.15965.pdf
- 41J. Simon, Régularité de la solution d'une équation non linéaire dans , Lectures Notes in Math., vol. 665, Springer, Berlin, 1978.
- 42J. Stubbe, Bound states of two-dimensional Schrödinger–Newton equations, 2008, https://arxiv.org/pdf/0807.4059v1.pdf.
- 43L. Wen, S. Chen, and V. D. Rădulescu, Axially symmetric solutions of the Schrödinger–Poisson system with zero mass potential in , Appl. Math. Lett. 104 (2020), 106244.