Fredholm theory of the Toeplitz algebra on the space of all entire functions
Corresponding Author
M. Jasiczak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
Correspondence
M. Jasiczak, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland.
Email: [email protected]
Search for more papers by this authorCorresponding Author
M. Jasiczak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
Correspondence
M. Jasiczak, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland.
Email: [email protected]
Search for more papers by this authorAbstract
We prove that an aggregate Toeplitz operator on the Fréchet space of all entire functions is a Fredholm operator if and only if its symbol does not vanish. The result is motivated by and closely resembles the classical result of Gohberg and Douglas from the Hardy space theory of Toeplitz operators. There are however some subtle differences which we also discuss.
CONFLICT OF INTEREST STATEMENT
The author declares no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
There is no data associated with this paper.
REFERENCES
- 1A. A. Albanese, J. Bonet, and W. J. Ricker, Operators on the Fréchet sequence spaces , , Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 2, 1533–1556.
10.1007/s13398-018-0564-2 Google Scholar
- 2A. A. Albanese, J. Bonet, and W. J. Ricker, Linear operators on the (LB)-sequence spaces , , Descriptive topology and functional analysis. II, Springer Proc. Math. Stat., vol. 286, Springer, Cham, 2019, pp. 43–67.
10.1007/978-3-030-17376-0_3 Google Scholar
- 3A. A. Albanese, J. Bonet, and W. J. Ricker, The Cesáro operator in weighted spaces, Math. Nachr. 291 (2018), no. 7, 1015–1048.
- 4A. A. Albanese, J. Bonet, and W. J. Ricker, The Cesáro operator on duals of power series spaces of infinite type, J. Operator Theory 79 (2018), no. 2, 373–402.
- 5J. Bonet, W. Lusky, and J. Taskinen, On boundedness and compactness of Toeplitz operators in weighted -spaces, J. Funct. Anal. 278 (2020), no. 10, 108456.
- 6J. Bonet, W. Lusky, and J. Taskinen, On the boundedness of Toeplitz operators with radial symbols over weighted sup-norm spaces of holomorphic functions, J. Math. Anal. Appl. 493 (2021), no. 1, 124515.
- 7J. Bonet and J. Taskinen, A note about Volterra operators on weighted Banach spaces of entire functions, Math. Nachr. 288 (2015), no. 11–12, 1216–1225.
- 8A. Böttcher and B. Silbermann, Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990.
10.1007/978-3-662-02652-6 Google Scholar
- 9P. Domański and M. Jasiczak, Toeplitz operators on the space of real analytic functions. Fredholm property, Banach J. Math. Anal. 12 (2018), 31–67.
- 10P. Domański and M. Langenbruch, Representation of multipliers of real analytic functions, Analysis 31 (2012), 1001–1026.
- 11P. Domański and M. Langenbruch, Algebra of multipliers on the space of real analytic functions of one variable, Studia Math. 212 (2012), 155–171.
- 12P. Domański and M. Langenbruch, Hadamard multipliers on spaces of real analytic functions, Adv. Math. 240 (2013), 575–612.
- 13P. Domański and M. Langenbruch, Interpolation of holomorphic functions and surjectivity of Taylor coefficient multipliers, Adv. Math. 293 (2016), 652–674.
- 14P. Domański and M. Langenbruch, Euler -type partial differential operators on real analytic functions, J. Math. Anal. Appl. 443 (2016), 652–674.
- 15P. Domański, M. Langenbruch, and D. Vogt, Hadamard -type operators on spaces of real analytic functions in several variables, J. Funct. Anal. 269 (2015), 3868–3913.
- 16P. Domański and D. Vogt, The space of real analytic functions has no basis, Studia Math. 142 (2000), 187–200.
- 17R. G. Douglas, On the spectrum of a class of Toeplitz operators, J. Math. Mech. Indiana Univ. 18 (1968), 433–436.
10.1512/iumj.1969.18.18034 Google Scholar
- 18R. G. Douglas, On the spectrum of Toeplitz and Wiener–Hopf operators, Abstract Spaces and Approximation, Birkhäuser Verlag, Basel, Stuttgart, 1969.
10.1007/978-3-0348-5869-4_4 Google Scholar
- 19R. G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, vol. 49, Academic Press, New York, 1972.
- 20P. Flajolet and R. Segdewick, Mellin transforms and asymptotics: finite differences and Rice's integrals, Theor. Comput. Sci. 144 (1995), 101–124.
- 21A. O. Gelfond, Differenzenrechnung, Hochschulbücher für Mathematik Herausgegeben von H. Grell, K. Maruhn und W. Rinow, Band 41, VEB Deutscher Verlag der Wissenschaften, Berlin, 1958.
- 22I. Gohberg, Factorization problems in normed rings, functions of isometric and symmetric operators, and singular integral equations, Uspekhi Mat. Nauk 19 (1964), 71–124.
- 23L. Hörmander, An introduction to complex analysis in several variables, North Holland, Amsterdam, 1990.
- 24M. Jasiczak, Coburn–Simonenko theorem and invertibility of Toeplitz operators on the space of real analytic functions, J. Operator Theory 79 (2018), 327–344.
- 25M. Jasiczak, Semi-Fredholm Toeplitz operators on the space of real analytic functions, Studia Math. 252 (2020), 213–250.
- 26M. Jasiczak and A. Golińska, One-sided invertibility of Toeplitz operators on the space of real analytic functions on the real line, Integral Equ. Oper. Theory 92 (2020), Paper no. 6.
- 27M. Jasiczak, Toeplitz operators on the space of all entire functions, New York J. Math. 26 (2020), 756–789.
- 28M. Jasiczak, Toeplitz operators on the space of all holomorphic functions on finitely connected domains, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 117 (2023), no. 1, 47a.
- 29M. Jasiczak, On the Toeplitz algebra in the case of all entire functions and all functions holomorphic in the unit disc, Complex Anal. Oper. Theory 18 no. 3 (2024) Paper no. 44, p. 25.
- 30G. Köthe, Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, 1969.
10.1007/978-3-642-64988-2 Google Scholar
- 31G. Köthe, Topological vector spaces. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 237, Springer-Verlag, New York, 1979.
10.1007/978-1-4684-9409-9 Google Scholar
- 32A. I. Markushevich, Theory of functions of a complex variable. Part II, AMS Chelsea Publishing, American Mathematical Society, Providence, RI, 2005.
- 33R. Meise and D. Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, New York, 1997.
10.1093/oso/9780198514855.001.0001 Google Scholar
- 34N. Nikolski, Toeplitz matrices and operators, Translated from the French edition by Daniele Gibbons and Greg Gibbons, Cambridge Studies in Advanced Mathematics, vol. 182, Cambridge University Press, Cambridge, 2020.
10.1017/9781108182577 Google Scholar