Extrapolation results on variable exponent grand Lebesgue space with weights
Corresponding Author
Monika Singh
Department of Mathematics, Lady Shri Ram College For Women, University of Delhi, New Delhi, India
Correspondence
Monika Singh, Department of Mathematics, Lady Shri Ram College For Women, University of Delhi, Lajpat Nagar, New Delhi 110024, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Monika Singh
Department of Mathematics, Lady Shri Ram College For Women, University of Delhi, New Delhi, India
Correspondence
Monika Singh, Department of Mathematics, Lady Shri Ram College For Women, University of Delhi, Lajpat Nagar, New Delhi 110024, India.
Email: [email protected]
Search for more papers by this authorAbstract
In this paper, we study Rubio de Francia extrapolation theorems in the framework of the variable grand Lebesgue spaces with weights. As an application of the extrapolation theorems, we prove the boundedness of the Hardy averaging operator and the fractional Riemann Liouville transform for nonnegative and nonincreasing measurable functions. Some structural properties of the weighted grand Lebesgue spaces with variable exponent are also investigated.
REFERENCES
- 1M. A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735.
- 2S. Boza and J. Soria, Weighted Hardy modular inequalities in variable spaces for decreasing functions, J. Math. Anal. Appl. 348 (2008), 383–388.
- 3M. J. Carro and M. Lorente, Rubio de Francia's extrapolation theorem for weights, Proc. Amer. Math. Soc. 138 (2010), 629–640.
- 4R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue Spaces, Springer, 2016.
10.1007/978-3-319-30034-4 Google Scholar
- 5D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Springer, Heidelberg, 2013.
- 6D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, Extrapolation and the theory of Rubia de Francia, Birkhäuser, 2011.
10.1007/978-3-0348-0072-3 Google Scholar
- 7F. Dai, L. Grafakos, Z. Pan, D. Yang, W. Yuan, and Y. Zhang, The Bourgain–Brezis–Mironescu formula on ball Banach function spaces, Math. Ann. 388 (2024), 1691–1768.
10.1007/s00208-023-02562-5 Google Scholar
- 8F. Dai, X. Lin, D. Yang, W. Yuan, and Y. Zhang, Brezis–Van Schaftingen–Yung formulae in ball Banach function spaces with applications to fractional Sobolev and Gagliardo–Nirenberg inequalities, Calc. Var. 62 (2023), no. 56, 1–68.
- 9A. Fiorenza, B. Gupta, and P. Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math. 188 (2008), 123–133.
- 10A. Fiorenza, V. Kokilashvili, and A. Meskhi, Hardy–Littlewood maximal operator in weighted grand variable exponent Lebesgue space, Mediterr. J. Math. 14 (2017), no. 118, 1–20.
- 11L. Greco, T. Iwaniec, and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), 249–258.
- 12T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal. 119 (1992), 129–143.
- 13P. Jain, M. Singh, and A. P. Singh, Recent trends in grand Lebesgue spaces, In P. Jain and H. J. Schmeisser (eds.), Function Spaces and Inequalities, Springer Proceedings in Mathematics and Statistics, vol. 206, Springer, Singapore, 2017.
10.1007/978-981-10-6119-6_6 Google Scholar
- 14V. Kokilashvili and A. Meskhi, Maximal and Calderón–Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J. 21 (2014), no. 4, 447–461.
- 15V. Kokilashvili and A. Meskhi, Maximal and singular integral operators in weighted grand variable exponent Lebesgue spaces, Ann. Funct. Anal. 12 (2021), no. 48, 1–29.
- 16V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, Integral operators in non-standard function spaces, Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, vol. 2, Birkhäuser, 2016.
- 17O. Kováčik and J. Rákosník, On and spaces, Czech. Math. J. 41 (1991), 592–618.
- 18J. Liu, D. Yang, and W. Yuan, Anisotropic variable Hardy–Lorentz spaces and their real interpolation, J. Math. Anal. Appl. 456 (2017), 356–393.
- 19A. Meskhi, Weighted criteria for the Hardy transform under the condition in grand Lebesgue spaces and some applications, J. Math. Sci. 178 (2011), 622–636.
10.1007/s10958-011-0574-5 Google Scholar
- 20C. J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ. Mat. 35 (1991), 429–447.
10.5565/PUBLMAT_35291_07 Google Scholar
- 21C. J. Neugebauer, Weighted variable integral inequalities for the maximal operator on non-increasing functions, Studia Math. 192 (2009), no. 1, 51–60.
- 22W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211.
10.4064/sm-3-1-200-211 Google Scholar
- 23Z. Pan, D. Yang, W. Yuan, and Y. Zhang, Gagliardo representation of norms of ball quasi-Banach function spaces, J. Funct. Anal. 286 (2024), 1–78.
- 24J. L. Rubio de Francia, Factorization theory and weights, Am. J. Math. 106 (1984), 533–547.
- 25I. I. Sharapudinov, Topology of the space , Math. Notes 26 (1979), 796–806.
- 26M. Singh and P. Jain, Hardy inequality in variable grand Lebesgue spaces for nonincreasing functions, Math. Notes 113 (2023), 282–291.
- 27A. P. Singh, R. Panchal, P. Jain, and M. Singh, Extrapolation theorems in Lebesgue and grand Lebesgue spaces for quasi-monotone functions, Trans. A. Razmad. Math. Inst. 177 (2023), 275–288.
- 28M. Singh, A. P. Singh, and P. Jain, Rubio de Francia extrapolation results for grand Lebesgue spaces defined on sets having possibly infinite measure, Math. Inequal. Appl. 25 (2022), 1079–1099.
- 29A. P. Singh, M. Singh, P. Jain, and R. Panchal, Rubio de Francia extrapolation theorem in variable Lebesgue spaces for weights, Ricerche Mat. 73 (2024), 1065–1083.
10.1007/s11587-021-00659-0 Google Scholar
- 30I. V. Tsenov, Generalization of the problem of the best approximation of a function in the space , Uch. Zap. Dagestan. Gos. Univ. 7 (1961), 25–37.
- 31X. Yan, D. Yang, W. Yuan, and C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal. 271 (2016), 2822–2887.
- 32C. Zhu, D. Yang, and W. Yuan, Generalized Brezis–Seeger–Van Schaftingen–Yung formulae and their applications in ball Banach Sobolev spaces, Calc. Var. Partial Diff. Equ. 62 (2023), no. 234, 1–76.