Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler
Corresponding Author
Mateo Anarella
INSA Hauts-de-France, CERAMATHS, Univ. Polytechnique Hauts-de-France, Valenciennes, France
KU Leuven, Department of Mathematics, Leuven, Belgium
Correspondence
Mateo Anarella, INSA Hauts-de-France, CERAMATHS, Univ. Polytechnique Hauts-de-France, Cedex 9, Valenciennes F-59313, France.
Email: [email protected]
Search for more papers by this authorJ. Van der Veken
KU Leuven, Department of Mathematics, Leuven, Belgium
Search for more papers by this authorCorresponding Author
Mateo Anarella
INSA Hauts-de-France, CERAMATHS, Univ. Polytechnique Hauts-de-France, Valenciennes, France
KU Leuven, Department of Mathematics, Leuven, Belgium
Correspondence
Mateo Anarella, INSA Hauts-de-France, CERAMATHS, Univ. Polytechnique Hauts-de-France, Cedex 9, Valenciennes F-59313, France.
Email: [email protected]
Search for more papers by this authorJ. Van der Veken
KU Leuven, Department of Mathematics, Leuven, Belgium
Search for more papers by this authorAbstract
In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler . First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.
REFERENCES
- 1B. Bektaş, M. Moruz, J. Van der Veken, and L. Vrancken, Lagrangian submanifolds with constant angle functions of the nearly Kähler , J. Geom. Phys. 127 (2018), 1–13.
- 2J.-B. Butruille, Homogeneous nearly Kähler manifolds, Handbook of pseudo-Riemannian geometry and supersymmetry, vol. 16, IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich, 2010, 399–423.
10.4171/079-1/11 Google Scholar
- 3G. Calvaruso and D. Perrone, Metrics of Kaluza–Klein type on the anti-de Sitter space, Math. Nachr. 287 (2014), no. 8–9, 885–902.
- 4B. Dioos, L. Vrancken, and X. Wang, Lagrangian submanifolds in the homogeneous nearly Kähler , Ann. Global Anal. Geom. 53 (2018), no. 1, 39–66.
- 5E. Ghandour and L. Vrancken, Almost complex surfaces in the nearly Kähler , Mathematics 8 (2020).
- 6A. Gray, Nearly Kähler manifolds, J. Differ. Geom. 4 (1970), 283–309.
10.4310/jdg/1214429504 Google Scholar
- 7A. Gray, The structure of nearly Kähler manifolds, Math. Ann. 223 (1976), no. 3, 233–248.
- 8A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), no. 1, 35–58.
10.1007/BF01796539 Google Scholar
- 9M. A. Magid, Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math. 8 (1984), no. 1, 31–54.
10.21099/tkbjm/1496159942 Google Scholar
- 10M. Moruz and L. Vrancken, Properties of the nearly Kähler , Publ. Inst. Math. 103 (2018), no. 117, 147–158.
10.2298/PIM1817147M Google Scholar
- 11P.-A. Nagy, Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002), no. 3, 481–504.
10.4310/AJM.2002.v6.n3.a5 Google Scholar
- 12H. Reckziegel, On the problem whether the image of a given differentiable map into Riemannian manifold is contained in a submanifold with parallel second fundamental form, J. Reine Angew. Math. 1981 (1981), no. 325, 87–104.
10.1515/crll.1981.325.87 Google Scholar
- 13L. Schäfer, Nearly pseudo-Kähler manifolds and related special holonomies, Lect. Notes Math., vol. 2201, Springer, Cham, 2017.
10.1007/978-3-319-65807-0 Google Scholar
- 14S.-I. Tachibana, On almost-analytic vectors in almost-Kählerian manifolds, Tohoku Math. J. (2) 11 (1959), 247–265.
- 15J. A. Wolf, Spaces of constant curvature, Publish or Perish, Inc., Houston, TX, 5th ed., 1984.
- 16Y. Zhang, B. Dioos, Z. Hu, L. Vrancken, and X. Wang, Lagrangian submanifolds in the 6-dimensional nearly Kähler manifolds with parallel second fundamental form, J. Geom. Phys. 108 (2016), 21–37.
- 17G. Calvaruso, I. I. Onnis, L. Pellegrino, and D. Uccheddu, Helix surfaces for Berger-like metrics on the anti-de Sitter space. Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 118 (2024), no. 2, https://doi.org/10.1007/s13398-024-01550-x
10.1007/s13398?024?01550?x Google Scholar
- 18I. Kath, Pseudo-RiemannianT-duals of compact Riemannian homogeneous spaces. Transformation Groups, 5 (2000), no. 2. 157–179. https://doi.org/10.1007/bf01236467