On coupled semilinear evolution systems: Techniques on fractional powers of matrices and applications
Maykel B. Belluzi
Universidade de São Paulo, ICMC, São Carlos, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Flank D. M. Bezerra
Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
Correspondence
Flank D. M. Bezerra, Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa PB, Brazil.
Email: [email protected]
Search for more papers by this authorMarcelo J. D. Nascimento
Universidade Federal de São Carlos, Departamento de Matemática, São Carlos, São Paulo, Brazil
Search for more papers by this authorMaykel B. Belluzi
Universidade de São Paulo, ICMC, São Carlos, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Flank D. M. Bezerra
Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
Correspondence
Flank D. M. Bezerra, Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa PB, Brazil.
Email: [email protected]
Search for more papers by this authorMarcelo J. D. Nascimento
Universidade Federal de São Carlos, Departamento de Matemática, São Carlos, São Paulo, Brazil
Search for more papers by this authorAbstract
In this paper, we provide several techniques to explicitly calculate fractional powers of operator matrices
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflict of interest.
REFERENCES
- 1F. Alabau-Boussouira, Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control, Math. Control Signals Systems 26 (2014), no. 1, 1–46.
- 2H. Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995.
10.1007/978-3-0348-9221-6 Google Scholar
- 3J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc. 352 (2000), no. 1, 285–310.
- 4J. M. Arrieta, A. N. Carvalho, and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations 156 (1999), no. 2, 376–406.
- 5J. M. Arrieta, A. N. Carvalho, and A. Rodríguez-Bernal, Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds, Comm. Partial Differential Equations 25 (2000), no. 1-2, 1–37.
- 6F. V. Atkinson, H. Langer, R. Mennicken, and A. A. Shkalikov, The essential spectrum of some matrix operators, Math. Nachr. 167 (1994), 5–20.
- 7M. Belluzi, M. J. D. Nascimento, and K. Schiabel, On a cascade system of Schrödinger equations. Fractional powers approach, J. Math. Anal. Appl. 506 (2022), no. 1, 125644.
- 8F. D. M. Bezerra, A. N. Carvalho, J. Cholewa, and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl. 450 (2017), no. 1, 377–405.
- 9F. D. M. Bezerra, A. N. Carvalho, T. Dłotko and M. J. D. Nascimento, Fractional Schrödinger equation; solvability, asymptotic behaviour and connection with classical Schrödinger equation, J. Math. Anal. Appl. 457 (2018), no. 1, 336–360.
- 10F. D. M. Bezerra, A. N. Carvalho, and M. J. D. Nascimento, Fractional approximations of abstract semilinear parabolic problems, Discrete Contin. Dyn. Syst. B 25 (2020), no. 11, 4221–4255.
- 11F. D. M. Bezerra and L. A. Santos, Fractional powers approach of operators for abstract evolution equations of third order in time, J. Differential Equations 269 (2020), 5661–5679.
- 12A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Aust. Math. Soc. 66 (2002) 443–463.
- 13A. N. Carvalho, J. A. Langa, and J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Applied Mathematical Sciences, vol. 182, Springer-Verlag, New York, 2012.
- 14A. N. Carvalho and M. J. D. Nascimento, Singularly non-autonomous semilinear parabolic problems with critical exponents, Discrete Contin. Dyn. Syst. Ser. S 2 (2009), no. 3, 449–471.
- 15S. Charfi, A. Jeribi, and R. Moalla, Essential spectra of operator matrices and applications, Math. Methods Appl. Sci. 37 (2014), no. 4, 597–608.
- 16K. J. Engel, Operator matrices and systems of evolution equations, nonlinear evolution equations and their applications (Japanese), Kyoto J. Math. 966 (1996), 61–80.
- 17K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
- 18A. Jeribi, Spectral theory and applications of linear operators and block operator matrices, Springer-Verlag, New York, 2015.
10.1007/978-3-319-17566-9 Google Scholar
- 19P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer-Verlag, New York-Berlin, 1982.
10.1007/978-1-4684-9330-6 Google Scholar
- 20D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.
10.1007/BFb0089647 Google Scholar
- 21E. Hille and R. S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, RI, 1974.
- 22J. Huang, J. Sun, A. Chen, and C. Trunk, Invertibility of operator matrices, Math. Nachr. 292 (2019), no. 11, 2411–2426.
- 23T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad. 36 (1960), 94–96.
10.3792/pja/1195524082 Google Scholar
- 24J. Liu, J. Huang, and A. Chen, Semigroup generations of unbounded block operator matrices based on the space decomposition, Oper. Matrices 14 (2020), no. 2, 295–304.
- 25C. Martínez Carracedo and M. Sanz Alix, The theory of fractional powers of operators, North-Holland Mathematics Studies, vol. 187, North-Holland Publishing Co., Amsterdam, 2001.
- 26R. Nagel, Operator matrices and reaction-diffusion systems, Rend. Sem. Mat. Fis. Milano 59 (1989), 185–196.
10.1007/BF02925301 Google Scholar
- 27R. Nagel, Towards a “matrix theory” for unbounded operator matrices, Math. Z. 201 (1989), no. 1, 57–68.
- 28R. Nagel, The spectrum of unbounded operator matrices with nondiagonal domain, J. Funct. Anal. 89 (1990), no. 2, 291–302.
- 29R. Nagel, Characteristic equations for the spectrum of generators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 703–717.
- 30Y. Qin and Z. Ma, Global Well-posedness and asymptotic behavior of the solutions to non-classical thermo(visco)elastic models, Springer, Singapore, 2016.
10.1007/978-981-10-1714-8 Google Scholar
- 31J. C. Robinson, Infinite-dimensional synamical systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
- 32C. Tretter, Spectral theory of block operator matrices and applications, Imperial College Press, London, 2008.
10.1142/p493 Google Scholar