Global integrability for solutions to quasilinear elliptic systems with degenerate coercivity
Ya Li
College of Mathematics and Information Science, Hebei University, Baoding, China
Search for more papers by this authorGaoyang Liu
College of Mathematics and Information Science, Hebei University, Baoding, China
Search for more papers by this authorCorresponding Author
Hongya Gao
College of Mathematics and Information Science, Hebei University, Baoding, China
Correspondence
Hongya Gao, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China.
Email: [email protected]
Search for more papers by this authorYa Li
College of Mathematics and Information Science, Hebei University, Baoding, China
Search for more papers by this authorGaoyang Liu
College of Mathematics and Information Science, Hebei University, Baoding, China
Search for more papers by this authorCorresponding Author
Hongya Gao
College of Mathematics and Information Science, Hebei University, Baoding, China
Correspondence
Hongya Gao, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China.
Email: [email protected]
Search for more papers by this authorAbstract
This paper deals with global integrability for solutions to quasilinear elliptic systems involving equations of the form
REFERENCES
- 1P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var. Partial Differential Equations 53 (2015), 803–846.
- 2M. F. Betta, T. Del Vecchio, and M. R. Posteraro, Existence and regularity results for nonlinear degenerate elliptic equations with measure data, Ric. Mat. 47 (1998), 277–295.
- 3L. Boccardo, Problemi differenziali ellittici e parabolici con dati misure, Boll. Unione Mat. Ital. Sez. A 11 (1997), 439–461.
- 4L. Boccardo and G. Croce, Esistenza e regolarità di soluzioni di alcuni problemi ellittici, Quaderni dellUMI, vol. 51, Pitagora Editrice, Bologna, 2010.
- 5L. Boccardo and G. Croce, Elliptic partial differential equations, De Gruyter Stud. Math. 55 (2014), 50–51.
- 6L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1998), 149–169.
10.1016/0022-1236(89)90005-0 Google Scholar
- 7L. Boccardo, T. Gallouët, and P. Marcellini, Anisotropic equations in , Differ. Integral Equ. 9 (1996), 209–212.
- 8G. R. Cirmi, On the existence of solutions to non-linear degenerate elliptic equations with measure data, Ric. Mat. 42 (1993), 315–329.
- 9G. R. Cirmi and S. Leonardi, Regularity results for the gradient of solutions linear elliptic equations with data, Ann. Mat. Pura Appl. 185 (2006), 537–553.
- 10M. Fuchs and J. Reuling, Non-linear elliptic systems involving measure data, Rend. Mat. Appl. 15 (1995), 101–109.
- 11H. Gao, H. Deng, M. Huang, and W. Ren, Generalizations of Stampacchia Lemma and applications to quasilinear elliptic systems, Nonlinear Anal. 208 (2021), 112297.
- 12H. Gao, M. Huang, H. Deng, and W. Ren, Global integrability for solutions to quasilinear elliptic systems, Manuscripta Math. 164 (2021), 23–37.
- 13H. Gao, S. Liang, and Y. Cui, Regularity for anisotropic solutions to some nonlinear elliptic system, Front. Math. China 11 (2016), 77–87.
- 14H. Gao, J. Zhang, and H. Ma, A generalization of Stampacchia Lemma and applications, https://arxiv.org/abs/2212.04237.
- 15P. Di Geronimo, F. Leonetti, M. Macrí, and P. V. Petricca, Existence of bounded solutions for some quasilinear degenerate elliptic systems, Minimax Theory its Appl. 6 (2021), 321–340.
- 16M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, Princeton, NJJ, 1980.
- 17M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31–46.
- 18E. De Giorgi, Un esempio estremali discontinue per un problema variazionale di tipo ellittico, Boll. Unione Mat. Ital. 4 (1968), 135–137.
- 19A. I. Koshelev, Regularity problem for quasilinear elliptic and parabolic systems, Springer, Berlin, 1995.
10.1007/BFb0094482 Google Scholar
- 20J. Kottas, Interior regularity for the quasilinear elliptic systems with nonsmooth coefficients, Comm. Math. Univ. Carolinae 28 (1997), 95–102.
- 21T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal. 262 (2012), 4205–4269.
- 22S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha, and V. Staicu, Maximum principles for some quasilinear elliptic systems, Nonlinear Anal. 194 (2020), 111377.
- 23S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha, and V. Staicu, Local boundedness for weak solutions to some quasilinear elliptic systems, Minimax Theory its Appl. 6 (2021), 365–372.
- 24S. Leonardi, J. Kottas, and J. Stara, Hölder regularity of the solutions of some classes of elliptic systems in convex nonsmooth domains, Nonlinear Anal. 60 (2005), 925–944.
- 25F. Leonetti and P. V. Petricca, Existence of bounded solutions to some nonlinear degenerate elliptic systems, Discrete Contin. Dyn. Syst. Ser. B 11 (2009), 191–203.
- 26F. Leonetti, E. Rocha, and V. Staicu, Quasilinear elliptic systems with measure data, Nonlinear Anal. 154 (2017), 210–224.
- 27F. Leonetti, E. Rocha, and V. Staicu, Smallness and cancellation in some elliptic systems with measure data, J. Math. Anal. Appl. 465 (2018), 885–902.
- 28M. Meier, Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, J. Reine Angew. Math. 333 (1982), 191–220.
- 29G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa 6 (2007), 195–261.
- 30G. Mingione, Gradient estimates below the duality exponent, Math. Ann. 346 (2010), 571–627.
- 31G. Mingione, La teoria di Calderon-Zygmund dal caso lineare a quello non lineare, Boll. Unione Mat. Ital. 9 (2013), 269–297.
- 32G. Mingione, Nonlinear measure data problems, Milan J. Math. 79 (2011), 429–496.
- 33J. Necas, On the regularity of weak solutions to nonlinear elliptic systems of partial differential equations, Lectures at Scuola Normale Superiore, Pisa, 1979.
- 34P. Oppezzi and A. M. Rossi, Esistenza di soluzioni per problemi unilateri con dato misura o in , Ric. Mat. 45 (1996), 491–513.
- 35K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219–240.
- 36Z. Q. Yan, Everywhere regularity for solutions to quasilinear elliptic systems of triangular form, Partial differential equations (Tianjin, 1986), Lecture Notes in Math., vol. 1306, Springer, Berlin, 1988, pp. 255–261.
- 37S. Zhou, A note on nonlinear elliptic systems involving measure, Electron J. Differential Equations 8 (2000), 1–6.