On K3 surfaces of Picard rank 14
Adrian Clingher
Department of Mathematics and Statistics, University of Missouri – St. Louis, St. Louis, Missouri, USA
Search for more papers by this authorCorresponding Author
Andreas Malmendier
Department of Mathematics & Statistics, Utah State University, Logan, Utah, USA
Correspondence
Andreas Malmendier, Department of Mathematics, and Statistics, Utah State University, Logan, UT 84322, USA.
Email: [email protected]
Search for more papers by this authorAdrian Clingher
Department of Mathematics and Statistics, University of Missouri – St. Louis, St. Louis, Missouri, USA
Search for more papers by this authorCorresponding Author
Andreas Malmendier
Department of Mathematics & Statistics, Utah State University, Logan, Utah, USA
Correspondence
Andreas Malmendier, Department of Mathematics, and Statistics, Utah State University, Logan, UT 84322, USA.
Email: [email protected]
Search for more papers by this authorAbstract
We study complex algebraic K3 surfaces with finite automorphism groups and polarized by rank 14, 2-elementary lattices. Three such lattices exist, namely, , , and . As part of our study, we provide birational models for these surfaces as quartic projective hypersurfaces and describe the associated coarse moduli spaces in terms of suitable modular invariants. Additionally, we explore the connection between these families and dual K3 families related via the Nikulin construction.
REFERENCES
- 1
F. Balestrieri, J. Desjardins, A. Garbagnati, C. Maistret, C. Salgado, and I. Vogt, Elliptic fibrations on covers of the elliptic modular surface of level 5, I. I. Bouw, E. Ozman, J. Johnson-Leung and R. Newton (Eds.), Women in Numbers Europe II, Assoc. Women Math. Ser., vol. 11, Springer, Cham, 2018, pp. 159–197, DOI https://doi.org/10.1007/978-3-319-74998-3_9. https://mathscinet-ams-org.ezproxy.lib.uconn.edu/mathscinet-getitem?mr=3882710.
10.1007/978-3-319-74998-3_9 Google Scholar
- 2S.-M. Belcastro, Picard lattices of families of surfaces, Comm. Algebra 30 (2002), no. 1, 61–82. https://mathscinet.ams.org/mathscinet-getitem?mr=1880661.
- 3N. Braeger, A. Malmendier, and Y. Sung, Kummer sandwiches and Greene-Plesser construction, J. Geom. Phys. 154 (2020), 103718. https://mathscinet.ams.org/mathscinet-getitem?mr=4099481.
- 4A. P. Braun, Y. Kimura, and T. Watari, On the classification of elliptic fibrations modulo isomorphism on k3 surfaces with large Picard number, 2013. https://arxiv.org/pdf/1312.4421.pdf.
- 5A. Clingher, R. Donagi, and M. Wijnholt, The Sen limit, Adv. Theor. Math. Phys. 18 (2014), no. 3, 613–658. https://mathscinet.ams.org/mathscinet-getitem?mr=3274790.
- 6A. Clingher and C. F. Doran, Modular invariants for lattice polarized surfaces, Michigan Math. J. 55 (2007), no. 2, 355–393, DOI http://doi.org/10.1307/mmj/1187646999.
10.1307/mmj/1187646999 Google Scholar
- 7A. Clingher and C. F. Doran, On surfaces with large complex structure, Adv. Math. 215 (2007), no. 2, 504–539. https://mathscinet.ams.org/mathscinet-getitem?mr=2355598.
- 8A. Clingher and C. F. Doran, Note on a geometric isogeny of K3 surfaces, Int. Math. Res. Not. 2011 (2011), no. 16, 3657–3687.
- 9A. Clingher and C. F. Doran, Lattice polarized K3 surfaces and Siegel modular forms, Adv. Math. 231 (2012), no. 1, 172–212, DOI http://doi.org/10.1016/j.aim.2012.05.001.
- 10A. Clingher, C. F. Doran, and A. Malmendier, Special function identities from superelliptic Kummer varieties, Asian J. Math. 21 (2017), no. 5, 909–951. https://mathscinet.ams.org/mathscinet-getitem?mr=3767270.
- 11A. Clingher, T. Hill, and A. Malmendier, Jacobian elliptic fibrations on a special family of K3 surfaces of Picard rank sixteen, Albanian J. Math., 17 (2019), no. 1, 13–28.
- 12A. Clingher, T. Hill, and A. Malmendier, The duality between F-theory and the heterotic string in with two Wilson lines, Lett. Math. Phys. 110 (2020), no. 11, 3081–3104. https://mathscinet.ams.org/mathscinet-getitem?mr=4160930.
- 13A. Clingher and A. Malmendier, Nikulin involutions and the CHL string, Comm. Math. Phys. 370 (2019), no. 3, 959–994. https://mathscinet.ams.org/mathscinet-getitem?mr=3995925.
- 14A. Clingher and A. Malmendier, Normal forms for Kummer surfaces, R. Donagie and T. Shaska (Eds.), Integrable Systems and Algebraic Geometry (London Mathematical Society Lecture Note Series), London Mathematical Society Lecture Note Series, pp. Vii-Viii, vol. 2, Cambridge University Press, Cambridge, 2020, pp. 119–174, DOI https://doi.org/10.1017/9781108773355.
10.1017/9781108773355.006 Google Scholar
- 15A. Clingher, A. Malmendier, and T. Shaska, Six line configurations and string dualities, Comm. Math. Phys. 371 (2019), no. 1, 159–196. https://mathscinet.ams.org/mathscinet-getitem?mr=4015343.
- 16A. Clingher, A. Malmendier, and T. Shaska, On isogenies among certain abelian surfaces, Michigan Math. J. 71 (2022), no. 2, 227–269.
- 17P. Comparin and A. Garbagnati, Van Geemen-Sarti involutions and elliptic fibrations on surfaces double cover of , J. Math. Soc. Japan 66 (2014), no. 2, 479–522. https://mathscinet-ams-org.ezproxy.lib.uconn.edu/mathscinet-getitem?mr=3201823.
- 18I. Dolgachev, Integral quadratic forms: applications to algebraic geometry (after V. Nikulin), Bourbaki seminar, Vol. 1982/83, Astérisque, 105, (1983) 251–278. https://mathscinet.ams.org/mathscinet-getitem?mr=728992.
- 19I. V. Dolgachev, Mirror symmetry for lattice polarized surfaces, J. Math. Sci. 81 (1996), no. 3, 2599–2630, DOI http://doi.org/10.1007/BF02362332, algebraic geometry, 4.
10.1007/BF02362332 Google Scholar
- 20D. Festi and D. C. Veniani, Counting ellptic fibrations on K3 surfaces, 2020, arXiv:2102.09411.
- 21A. Garbagnati and C. Salgado, Elliptic fibrations on K3 surfaces with a non-symplectic involution fixing rational curves and a curve of positive genus, Rev. Mat. Iberoam. 36 (2020), no. 4, 1167–1206. https://mathscinet-ams-org.ezproxy.lib.uconn.edu/mathscinet-getitem?mr=4130832.
- 22A. Garbagnati and A. Sarti, On symplectic and non-symplectic automorphisms of K3 surfaces, Rev. Mat. Iberoam. 29 (2013), no. 1, 135–162. https://mathscinet.ams.org/mathscinet-getitem?mr=3010125.
- 23A. Garbagnati and A. Sarti, Kummer surfaces and K3 surfaces with symplectic action, Rocky Mountain J. Math. 46 (2016), no. 4, 1141–1205. https://mathscinet.ams.org/mathscinet-getitem?mr=3563178.
- 24E. Griffin and A. Malmendier, Jacobian elliptic Kummer surfaces and special function identities, Commun. Number Theory Phys. 12 (2018), no. 1, 97–125. https://mathscinet.ams.org/mathscinet-getitem?mr=3798883.
- 25J. Gu and H. Jockers, Nongeometric -theory–heterotic duality, Phys. Rev. D 91 (2015), no. 8, 086007, 10. https://mathscinet.ams.org/mathscinet-getitem?mr=3417046.
- 26W. L. Hoyt, Notes on elliptic surfaces, D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson (Eds.), Number theory (New York, 1984–1985), Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 196–213, DOI https://doi.org/10.1007/BFb0072981.
10.1007/BFb0072981 Google Scholar
- 27W. L. Hoyt, Elliptic fiberings of Kummer surfaces, D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson (Eds.), Number theory (New York, 1985/1988), Lecture Notes in Math., vol. 1383, Springer, Berlin, 1989, pp. 89–110, DOI https://doi.org/10.1007/BFb0083572.
10.1007/BFb0083572 Google Scholar
- 28W. L. Hoyt, On twisted Legendre equations and Kummer surfaces, Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math. 49 (1989) 695–707.
10.1090/pspum/049.1/1013162 Google Scholar
- 29W. L. Hoyt and C. F. Schwartz, Yoshida surfaces with Picard number , Proceedings on Moonshine and related topics (Montréal, QC, 1999), CRM Proc. Lecture Notes, vol. 30, pp. 71–78. Amer. Math. Soc., Providence, RI (2001).
10.1090/crmp/030/06 Google Scholar
- 30H. Inose, Defining equations of singular surfaces and a notion of isogeny, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 495–502. https://mathscinet.ams.org/mathscinet-getitem?mr=578868.
- 31J. H. Keum, Automorphisms of Jacobian Kummer surfaces, Compositio Math. 107 (1997), no. 3, 269–288, DOI http://doi.org/10.1023/A:1000148907120.
- 32J. H. Keum, Automorphisms of a generic Jacobian Kummer surface, Geom. Dedicata 76 (1999), no. 2, 177–181, DOI http://doi.org/10.1023/A:1005019201955.
- 33Y. Kimura, Discrete gauge groups in certain F-theory models in six dimensions, J. High Energy Phys. 2019 (2019), no. 27. https://doi.org/10.1007/JHEP07(2019)027
10.1007/JHEP07(2019)027 Google Scholar
- 34Y. Kimura, Nongeometric heterotic strings and dual F-theory with enhanced gauge groups, J. High Energy Phys. 2019 (2019), no. 36. https://doi.org/10.1007/JHEP02(2019)036.
10.1007/JHEP02(2019)036 Google Scholar
- 35R. Kloosterman, Classification of all Jacobian elliptic fibrations on certain surfaces, J. Math. Soc. Japan 58 (2006), no. 3, 665–680. https://mathscinet.ams.org/mathscinet-getitem?mr=2254405.
- 36K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563–626; ibid. 78 (1963), 1–40. https://mathscinet.ams.org/mathscinet-getitem?mr=0184257.
- 37S. Kondo, Algebraic surfaces with finite automorphism groups, Nagoya Math. J. 116 (1989), 1–15. https://mathscinet.ams.org/mathscinet-getitem?mr=1029967.
- 38A. Kumar, surfaces associated with curves of genus two, Int. Math. Res. Not. 2008 (2008), rnm165. http://doi.org/10.1093/imrn/rnm165.
10.1093/imrn/rnm165 Google Scholar
- 39A. Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, J. Algebraic Geom. 23 (2014), no. 4, 599–667. https://mathscinet.ams.org/mathscinet-getitem?mr=3263663.
- 40M. Kuwata and T. Shioda, Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface, K. Konno and V. Nguyen-Khac (Eds.), Algebraic geometry in East Asia—Hanoi 2005, Adv. Stud. Pure Math., vol. 50, Math. Soc. Japan, Tokyo, 2008, pp. 177–215, DOI https://doi.org/10.2969/aspm/05010177. https://mathscinet.ams.org/mathscinet-getitem?mr=2409557.
10.2969/aspm/05010177 Google Scholar
- 41G. Lombardo, C. Peters, and M. Schütt, Abelian fourfolds of Weil type and certain K3 double planes, Rend. Semin. Mat. Univ. Politec. Torino 71 (2013), no. 3-4, 339–383. https://mathscinet.ams.org/mathscinet-getitem?mr=3506391.
- 42A. Malmendier, Kummer surfaces associated with Seiberg-Witten curves, J. Geom. Phys. 62 (2012), no. 1, 107–123, DOI http://doi.org/10.1016/j.geomphys.2011.09.010.
- 43A. Malmendier and D. R. Morrison, K3 surfaces, modular forms, and non-geometric heterotic compactifications, Lett. Math. Phys. 105 (2015), no. 8, 1085–1118, DOI http://doi.org/10.1007/s11005-015-0773-y.
- 44A. Malmendier and T. Shaska, The Satake sextic in F-theory, J. Geom. Phys. 120 (2017), 290–305. https://mathscinet.ams.org/mathscinet-getitem?mr=3712162.
- 45A. Malmendier and Y. Sung, Counting rational points on Kummer surfaces, Res. Number Theory 5 (2019), no. 3, Paper No. 27, 23. https://mathscinet.ams.org/mathscinet-getitem?mr=3992148.
- 46K. Matsumoto, Theta functions on the classical bounded symmetric domain of type , Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 1, 1–5. http://projecteuclid.org/euclid.pja/1195512258.
10.3792/pjaa.67.1 Google Scholar
- 47K. Matsumoto, Theta functions on the bounded symmetric domain of type and the period map of a 4-parameter family of surfaces, Math. Ann. 295 (1993), no. 3, 383–409, DOI http://doi.org/10.1007/BF01444893.
10.1007/BF01444893 Google Scholar
- 48A. Mehran, Double covers of Kummer surfaces, Manuscripta Math. 123 (2007), no. 2, 205–235, DOI http://doi.org/10.1007/s00229-007-0092-4.
- 49D. R. Morrison, On surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105–121, DOI http://doi.org/10.1007/BF01403093.
- 50A. Nagano and K. Ueda, The ring of modular forms of with characters, Hokkaido Math. J. 51 (2022), no. 2, 275–286.
- 51V. V. Nikulin, An analogue of the Torelli theorem for Kummer surfaces of Jacobians, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 22–41. https://mathscinet.ams.org/mathscinet-getitem?mr=0357410.
- 52V. V. Nikulin, Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 278–293, 471. https://mathscinet.ams.org/mathscinet-getitem?mr=0429917.
- 53V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137. https://mathscinet.ams.org/mathscinet-getitem?mr=544937.
- 54V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238. https://mathscinet.ams.org/mathscinet-getitem?mr=525944.
- 55V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by 2-reflections, Dokl. Akad. Nauk SSSR 248 (1979), no. 6, 1307–1309. https://mathscinet.ams.org/mathscinet-getitem?mr=556762.
- 56V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2-reflections, R. V. Gamkrelidze (Ed.), Algebro-geometric applications, Current problems in mathematics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981, pp. 3–114. https://mathscinet.ams.org/mathscinet-getitem?mr=633160.
- 57V. V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications, J. Sov. Math. 22 (1983), no. 4, 1401–1475, https://doi.org/10.1007/BF01094757.
10.1007/BF01094757 Google Scholar
- 58V. V. Nikulin, surfaces with a finite group of automorphisms and a Picard group of rank three, Algebraic geometry and its applications, Trudy Mat. Inst. Steklov. vol. 165, 1984, pp. 119–142. https://mathscinet.ams.org/mathscinet-getitem?mr=752938
- 59V. V. Nikulin, Elliptic fibrations on surfaces, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 253–267. https://mathscinet.ams.org/mathscinet-getitem?mr=3165023.
- 60K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves, J. Math. Soc. Japan 41 (1989), no. 4, 651–680, DOI http://doi.org/10.2969/jmsj/04140651.
- 61X. Roulleau, An atlas of K3 surfaces with finite automorphism group, Épijournal Géom. Algébrique 6 (2022), Art. 19, 95 p.
- 62M. Schütt, Sandwich theorems for Shioda-Inose structures, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 1, 211–224. https://mathscinet.ams.org/mathscinet-getitem?mr=3087091.
- 63I. Shimada, On elliptic surfaces, Michigan Math. J. 47 (2000), no. 3, 423–446. https://mathscinet.ams.org/mathscinet-getitem?mr=1813537.
- 64T. Shioda, Kummer sandwich theorem of certain elliptic surfaces, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 137–140. https://mathscinet.ams.org/mathscinet-getitem?mr=2279280.
- 65H. Sterk, Finiteness results for algebraic surfaces, Math. Z. 189 (1985), no. 4, 507–513. https://mathscinet.ams.org/mathscinet-getitem?mr=786280.
- 66B. van Geemen, An introduction to the Hodge conjecture for abelian varieties, A. Albano and F. Bardelli (Eds.), Algebraic cycles and Hodge theory (Torino, 1993), Lecture Notes in Math., vol. 1594, Springer, Berlin, 1994, pp. 233–252, DOI https://doi.org/10.1007/978-3-540-49046-3_5. https://mathscinet.ams.org/mathscinet-getitem?mr=1335243.
10.1007/978-3-540-49046-3_5 Google Scholar
- 67B. van Geemen and A. Sarti, Nikulin involutions on surfaces, Math. Z. 255 (2007), no. 4, 731–753. https://mathscinet.ams.org/mathscinet-getitem?mr=2274533.
- 68E. B. Vinberg, On automorphic forms on symmetric domains of type IV, Uspekhi Mat. Nauk 65 (2010), no. 3(393), 193–194. https://mathscinet.ams.org/mathscinet-getitem?mr=2682724.
- 69E. B. Vinberg, Some free algebras of automorphic forms on symmetric domains of type IV, Transform. Groups 15 (2010), no. 3, 701–741. https://mathscinet.ams.org/mathscinet-getitem?mr=2718942.
- 70E. B. Vinberg, On the algebra of Siegel modular forms of genus 2, Trans. Moscow Math. Soc. (2013), 1–13. https://doi.org/10.1090/S0077-1554-2014-00217-X.
10.1090/S0077-1554-2014-00217-X Google Scholar