Weak solutions for fractional differential equations in nonreflexive Banach spaces via Riemann-Pettis integrals
Corresponding Author
Ravi P. Agarwal
Department of Mathematics, Texas A&M University-Kingville, Kingsville, TX, USA
Corresponding author: e-mail: [email protected], Phone: +1 (361) 593 3517, Fax: +1 (361) 593 3518Search for more papers by this authorVasile Lupulescu
Constantin Brancusi University, Republicii 1, 210152 Targu-Jiu, Romania
Search for more papers by this authorDonal O'Regan
School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
Search for more papers by this authorGhaus ur Rahman
University of Swat, Khyber Pakhtunkhwa, Pakistan
Abdus Salam School of Mathematical Sciences, GC University Lahore, Lahore, 54000 Pakistan
Search for more papers by this authorCorresponding Author
Ravi P. Agarwal
Department of Mathematics, Texas A&M University-Kingville, Kingsville, TX, USA
Corresponding author: e-mail: [email protected], Phone: +1 (361) 593 3517, Fax: +1 (361) 593 3518Search for more papers by this authorVasile Lupulescu
Constantin Brancusi University, Republicii 1, 210152 Targu-Jiu, Romania
Search for more papers by this authorDonal O'Regan
School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
Search for more papers by this authorGhaus ur Rahman
University of Swat, Khyber Pakhtunkhwa, Pakistan
Abdus Salam School of Mathematical Sciences, GC University Lahore, Lahore, 54000 Pakistan
Search for more papers by this authorAbstract
The aim of this paper is to develop fractional calculus for vector-valued functions using the weak Riemann integral. Also, we establish the existence of weak solutions for a class of fractional differential equations with fractional weak derivatives.
References
- 1R. P. Agarwal, M. Belmekki, and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann Liouville fractional derivative, Adv. Difference Equ. 47 (2009), Art. ID 981728.
- 2R. P. Agarwal, V. Lupulescu, D. O'Regan, and G. ur Rahman, Fractional calculus and fractional differential equations in nonreflexive Banach spaces, Commun. Nonlinear Sci. Numer. Simul. 20, 59–73 (2015).
- 3R. P. Agarwal, V. Lupulescu, D. O'Regon, and G. ur Rahman, Multi-term fractional differential equation in nonreflexive Banach spaces, Adv. Difference Equ. 2013 (2013), Art. No. 302.
- 4A. B. Amar, Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock–Kurzweil–Pettis integrability, Comment. Math. Univ. Carolin. 52, 177–190 (2011).
- 5A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39, 349–369 (1967).
- 6A. Alexiewicz and W. Orlicz, Remarks on Riemann-integration of vector valued functions, Studia Math. 12, 125–132 (1951).
- 7W. Arendt, C. Batty, M. Hieber, and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math. Vol. 96 (Birkhäuser, Basel, 2001).
- 8E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven University of Technology (2001).
- 9M. Benchohra and F. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach spaces, Opuscula Math. 32(1), 31–40 (2012).
10.7494/OpMath.2012.32.1.31 Google Scholar
- 10M. Benchohra, J. R. Graef, and F. Mostefai, Weak solutions for nonlinear fractional differential equations on reflexive Banah spaces, Electron. J. Qual. Theory Differ. Equ. 54, 1–10 (2010).
10.14232/ejqtde.2010.1.54 Google Scholar
- 11P. L. Butzer and U. Westphal, An introduction to fractional calculus, in: Applications of Fractional Calculus in Physics, edited by R. Hilfer (World Scientific Publishing, Singapore, 2000), pp. 1–87.
10.1142/9789812817747_0001 Google Scholar
- 12M. Cichoń, On bounded weak solutions of a nonlinear differential equation in Banach spaces, Funct. Approx. Comment. Math. 21, 27–35 (1992).
- 13M. Cichoń, Weak solutions of ordinary differential equations in Banach spaces, Discuss. Math. Differ. Inc. Conrol Optimal 15, 5–14 (1995).
- 14M. Cichoń, On solutions of differential equations in Banach spaces, Nonlinear Anal. 60, 651–667 (2005).
- 15M. Cichoń and I. Kubiaczyk, Kneser's theorem for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces, Ann. Polon. Math. 52, 13–21 (1995).
- 16M. Cichoń, I. Kubiaczyk, A. Sikorska-Nowak, and A. Yantir, Weak solution for the dynamic Cauchy problem in Banach spaces, Nonlinear Anal. 71, 2936–2943 (2009).
- 17E. Cramer, V. Lakshmikantham, and A. R. Mitchell, On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2, 259–262 (1978).
10.1016/0362-546X(78)90063-9 Google Scholar
- 18F. De Blasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R. S. Roumanie 21, 259–262 (1977).
- 19A. Dutkiewicz and S. Szufla, Kneser's theorem for weak solution of and integral equation with weakly singular kernal, Publ. Inst. Math. (Beograd) (N.S.) 77(91), 87–92 (2005).
10.2298/PIM0591087D Google Scholar
- 20K. Diethelem, The Analysis of Fractional Differential Equations (Springer, Heidelberg, Dordrecht, London, New York, 2004).
- 21R. Gordon, Riemann integration in Banach spaces, Rocky Mountain J. Math 21(3), 923–949 (1991).
- 22A. M. Gomaa, Weak and strong solutions for differential equations in Banach spaces, Chaos Soliton. Fract. 18, 687–692 (2003).
- 23L. M. Graves, Riemann integration and Taylor's theorem in general analysis, Trans. Amer. Math. Soc. 29, 163–177 (1927).
10.2307/1989284 Google Scholar
- 24H. H. G. Hashem, Weak solutions of differential equations in Banach spaces, Fract. Calc. Appl. Anal. 3(1), 1–9 (2012).
- 25E. Hernández, D. O'Regan, and K. Balachandran, Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators, Indag. Math. 24, 68–82 (2013).
- 26M. Kerner, Gewöhnliche Differentialeichungen der allgemeinen Analysis, Prace Mat.-Fiz. 40, 47–87 (1932).
- 27A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006).
10.1016/S0304-0208(06)80001-0 Google Scholar
- 28I. Kubiaczyk and S. Szufla, Kenser's theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd) (N.S.) 32(46), 99–103 (1982).
- 29K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley and Sons, New York, 1993).
- 30J. P. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44, 277–304 (1938).
- 31D. O'Regan, Weak solutions of ordinary differential equations in Banach spaces, Appl. Math. Lett. 12, 101–105 (1999).
- 32D. O'Regan, Fixed point theorem for weakly sequentially closed maps, Arch. Math. (Brno) 36, 61–70 (2000).
- 33R. Rejouani, On the question of the Riemann integrability of functions with values in a Banach space, Vestnik Moscov. Univ. Ser. I Math. Meh. 26, 75–79 (1971).
- 34J. R. Ruiz, Integrales vectoriales de Riemann y McShane, Tesina de Licenciatura (Universidad de Murcia, Murcia, 2002).
- 35H. A. H. Salem, A. M. A. El-Sayed, and O. L. Moustafa, A note on the fractional Calculus in Banach spaces, Studia Sci. Math. Hungar. 42(2), 115–130 (2005).
- 36H. A. H. Salem and A. M. A. El-Sayed, Weak solution for fractional order integral equations in reflexive Banach spaces, Math. Slovaca 55(2), 169–181 (2005).
- 37H. A. H. Salem and M. Cichoń, On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 428094.
- 38S. Samko, A. Kilbas, and O. Marichev, Fraction Integrals and Drivatives (Gordon and Breach Science Publisher, London, (1993).
- 39S. Schwabik and Y. Guoju, Topics in Banach Space Integration (World Scientific, Singapore, 2005).
10.1142/5905 Google Scholar
- 40A. Szep, Existence theorem for weak solutions of differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6, 197–203 (1971).
- 41S. Szufla, Sets of fixed points of nonlinear mappings in functions spaces, Funkcial. Ekvac. 22, 121–126 (1979).