Carleson measures on domains in Heisenberg groups
Corresponding Author
Tomasz Adamowicz
The Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
Correspondence
Tomasz Adamowicz, The Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland.
Email: [email protected]
Search for more papers by this authorMarcin Gryszówka
The Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
Search for more papers by this authorCorresponding Author
Tomasz Adamowicz
The Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
Correspondence
Tomasz Adamowicz, The Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland.
Email: [email protected]
Search for more papers by this authorMarcin Gryszówka
The Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
Search for more papers by this authorT. A. and M. G. were supported by the National Science Center, Poland (NCN), UMO-2020/39/O/ST1/00058.
Abstract
We study the Carleson measures on nontangentially accessible (NTA) and admissible for the Dirichlet problem (ADP) domains in the Heisenberg groups and provide two characterizations of such measures: (1) in terms of the level sets of subelliptic harmonic functions and (2) via the 1-quasiconformal family of mappings on the Korányi–Reimann unit ball. Moreover, we establish the -bounds for the square function of a subelliptic harmonic function and the Carleson measure estimates for the BMO boundary data, both on NTA domains in . Finally, we prove a Fatou-type theorem on -domains in . Our work generalizes results by Capogna–Garofalo and Jerison–Kenig.
REFERENCES
- 1T. Adamowicz and K. Fässler, Hardy spaces and quasiconformal maps in the Heisenberg group, J. Funct. Anal. 284 (2023), no. 6, 109832.
- 2T. Adamowicz and M. J. González, Hardy spaces for quasiregular mappings and composition operators, J. Geom. Anal. 31 (2021), no. 11, 11417–11427.
- 3T. Adamowicz and M. J. González, Hardy spaces and quasiregular mappings, accepted to Trans. Amer. Math. Soc., http://doi.org/10.1090/tran/9446.
10.1090/tran/9446 Google Scholar
- 4T. Adamowicz and B. Warhurst, Mean value property and harmonicity on Carnot–Carathéodory groups, Potential Anal. 52 (2020), no. 3, 497–525.
- 5L. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn, 1981.
- 6D. Aalto, L. Berkovits, O. E. Kansanen, and H. Yue, John–Nirenberg lemmas for a doubling measure, Studia Math. 204 (2011), no. 4, 21–37.
10.4064/sm204-1-2 Google Scholar
- 7K. Astala and P. Koskela, -theory for Quasiconformal Mappings, Pure Appl. Math. Q. 7 (2011), no. 1, 19–50.
10.4310/PAMQ.2011.v7.n1.a3 Google Scholar
- 8Z. Balogh and J. T. Tyson, Polar coordinates in Carnot groups, Math. Z. 241 (2002), no. 4, 697–730.
- 9A. Bellaïche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian geometry, eds. A. Bellaïche and J. J. Risler, Birkhäuser, Basel, 1996, pp. 1–78.
10.1007/978-3-0348-9210-0_1 Google Scholar
- 10A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Math. Soc., Zurich.
- 11A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.
- 12S. Bortz and S. Hofmann, Quantitative Fatou theorems and uniform rectifiability, Potential Anal. 53 (2020), no. 1, 329–355.
- 13L. Capogna and N. Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot–Carathéodory metrics, J. Fourier Anal. Appl. 4 (1998), no. 4–5, 403–432.
- 14L. Capogna, N. Garofalo and D.-M. Nhieu, Properties of harmonic measures in the Dirichlet problem for nilpotent Lie groups of Heisenberg type, Amer. J. Math. 124 (2002), no. 2, 273–306.
- 15L. Capogna and P. Tang, Uniform domains and quasiconformal mappings in the Heisenberg group, Manuscripta Math. 86 (1995), no. 3, 267–282.
10.1007/BF02567994 Google Scholar
- 16L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393–399.
10.1007/BF02591620 Google Scholar
- 17E. B. Fabes and U. Neri, Dirichlet problem in Lipschitz domains with BMO data, Proc. Amer. Math. Soc. 78 (1980), no. 1, 33–39.
- 18B. Franchi, BV spaces and rectifiability for Carnot–Carathéodory metrics: an introduction, Czechoslovak Academy of Sciences, Mathematical Institute, Prague, 2003, pp. 72–132.
- 19J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 20J. Garnett, M. Mourgoglou, and X. Tolsa, Uniform rectifiability from Carleson measure estimates and -approximability of bounded harmonic functions, Duke Math. J. 167 (2018), no. 8, 1473–1524.
10.1215/00127094-2017-0057 Google Scholar
- 21N. Garofalo and N.-C. Phuc, Boundary behavior of -harmonic functions in the Heisenberg group, Math. Ann. 351 (2011), no. 3, 587–632.
10.1007/s00208-010-0611-6 Google Scholar
- 22M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), no. 3, 303–342.
- 23M. Gryszówka, -Approximability and Quantitative Fatou Theorem on Riemannian Manifolds, J. Geom. Anal. 35 (2025), no. 5, 26.
10.1007/s12220-025-01964-y Google Scholar
- 24J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006.
- 25J. Heinonen, P. Koskela, N. Shanmugalingam, and J. Tyson, Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge, 2015.
10.1017/CBO9781316135914 Google Scholar
- 26S. Hofmann, P. Le, and A. Morris, Carleson measure estimates and the Dirichlet problem for degenerate elliptic equations, Anal. PDE 12 (2019), no. 8, 2095–2146.
- 27S. Hofmann, J. Martell, and S. Mayboroda, Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions, Duke Math. J. 165 (2016), no. 12, 2331–2389.
- 28S. Hofmann, J. Martell, S. Mayboroda, T. Toro, and Z. Zhao, Uniform rectifiability and elliptic operators satisfying a Carleson measure condition, Geom. Funct. Anal. 31 (2021), no. 2, 325–401.
- 29S. Hofmann, D. Mitrea, M. Mitrea, and A. J. Morris, -square function estimates on spaces of homogeneous type and on uniformly rectifiable sets, Mem. Amer. Math. Soc. 245 (2017), no. 1159, v+108 pp.
- 30S. Hofmann and O. Tapiola, Uniform rectifiability implies Varopoulos extensions, Adv. Math. 390 (2021), 107961, 53 pp.
- 31D. Jerison and C. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982), no. 1, 80–147.
10.1016/0001-8708(82)90055-X Google Scholar
- 32P. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), no. 1-2, 71–88.
- 33J. Kinnunen and V. Latvala, Lebesgue points for Sobolev functions on metric spaces, Rev. Mat. Iberoam. 18 (2002), no. 3, 685–700.
- 34A. Korányi and H. M. Reimann, Horizontal normal vectors and conformal capacity of spherical rings in the Heisenberg group, Bull. Sci. Math., II. Sér. 111 (1987), 3–21.
- 35A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1–87.
- 36P. Koskela, J. Manfredi, and E. Villamor, Regularity theory and traces of -harmonic functions. Trans. Amer. Math. Soc. 348 (1996), no. 2, 755–766.
10.1090/S0002-9947-96-01430-4 Google Scholar
- 37E. Lanconelli and F. Uguzzoni, On the Poisson kernel for the Kohn Laplacian, Rend. Mat. Appl. (7) 17 (1997), no. 4, 659–677.
- 38D. Mitrea, I. Mitrea, M. Mitrea, and B. Schmutzler, Calderón–Zygmund theory for second-order elliptic systems on Riemannian manifolds, Integral methods in science and engineering, Birkhäuser/Springer, Cham, 2015, pp. 413–426.
10.1007/978-3-319-16727-5_35 Google Scholar
- 39D.-M. Nhieu, Extension of Sobolev spaces on the Heisenberg group, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 12, 1559–1564.
- 40D.-M. Nhieu, The Neumann problem for sub-Laplacians on Carnot groups and the extension theorem for Sobolev spaces, Ann. Mat. Pura Appl.(4) 180 (2001), no. 1, 1–25.
- 41E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., No. 30, Princeton University Press, Princeton, NJ, 1970, xiv+290 pp.
- 42J. Väisälä, Uniform domains, Tohoku Math. J. 40 (1988), 101–118.
- 43W. Ziemer, Weakly differentiable functions, Springer, New York, 1989.
10.1007/978-1-4612-1015-3 Google Scholar
- 44M. Zinsmeister, A distortion theorem for quasiconformal mappings Bull. Soc. Math. France 114 (1986), no. 1, 123–133.
10.24033/bsmf.2050 Google Scholar