Manipulation of Plasmonic Oxide Inside Transparent Matrices for Boosting Infrared Optical Nonlinearity and Ultrafast Optical Switching
Pengyun Wang
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJiahe Yan
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHaiqiang Zhu
Advanced Photonics Technology Lab, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Pin Gu
Advanced Photonics Technology Lab, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zuxing Zhang
Advanced Photonics Technology Lab, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJianrong Qiu
State Key Lab of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xiaofeng Liu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorPengyun Wang
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJiahe Yan
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHaiqiang Zhu
Advanced Photonics Technology Lab, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Pin Gu
Advanced Photonics Technology Lab, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zuxing Zhang
Advanced Photonics Technology Lab, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJianrong Qiu
State Key Lab of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xiaofeng Liu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The integration and manipulation of plasmonic nanostructures inside a stable monolithic medium could be of high interest for solid-state photonic devices. Here, the development of inorganic oxide glasses is demonstrated wherein the growth of plasmonic nanoparticles (NPs) based on indium tin oxide (ITO) through solid-state reaction can be manipulated in a controllable manner. The plasmonic response of the precipitated ITO NPs contributes to boosted and tunable infrared nonlinear optical (NLO) response associated with localized surface plasmon resonance (LSPR) of the ITO NPs. It is further elucidated that the plasmon coupling between ITO NPs in the glass matrix plays an essential role in the 100-fs scale NLO response by accelerating the relaxation of hot electrons, such that the NLO response speed can be enhanced to exceed that in typical noble metal-based plasmonic nanostructures. The ultrafast absorptive optical nonlinearity with a high modulation depth could enable diverse applications, as exemplified here by the robust optical switching for mode-locked pulse generation in fiber lasers. These results could have strong implications for the development of integrated solid-state plasmonic devices for photonics applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202500333-sup-0001-SuppMat.docx8.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature 2003, 424, 824.
- 2N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Chem. Rev. 2011, 111, 3913.
- 3J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, Nat. Mater. 2010, 9, 193.
- 4M. Moskovits, Rev. Mod. Phys. 1985, 57, 783.
- 5M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, J. Leuthold, Science 2017, 358, 630.
- 6M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, R. F. Oulton, Science 2017, 358, 1179.
- 7M. Kauranen, A. V. Zayats, Nat. Photon 2012, 6, 737.
- 8K. F. MacDonald, Z. L. Sámson, M. I. Stockman, N. I. Zheludev, Nat. Photon 2009, 3, 55.
- 9J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, Nat. Mater. 2011, 10, 361.
- 10G. V. Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater. 2013, 25, 3264.
- 11S. L. Gibbs, C. M. Staller, D. J. Milliron, Acc. Chem. Res. 2019, 52, 2516.
- 12A. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R. W. Johns, D. J. Milliron, Chem. Rev. 2018, 118, 3121.
- 13L. Jauffred, A. Samadi, H. Klingberg, P. M. Bendix, L. B. Oddershede, Chem. Rev. 2019, 119, 8087.
- 14R. Jiang, B. Li, C. Fang, J. Wang, Adv. Mater. 2014, 26, 5274.
- 15H. Kang, J. T. Buchman, R. S. Rodriguez, H. L. Ring, J. He, K. C. Bantz, C. L. Haynes, Chem. Rev. 2019, 119, 664.
- 16A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, N. A. Mortensen, Nat. Rev. Mater. 2016, 2, 16 088.
10.1038/natrevmats.2016.88 Google Scholar
- 17X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, A. Kristensen, Nat. Nanotech 2016, 11, 325.
- 18S. Kasani, K. Curtin, N. Wu, Nanophotonics 2019, 8, 2065.
- 19J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, K. Hirao, Angew. Chem. Int. Ed. 2004, 43, 2230.
- 20A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, K. Rademann, J. Am. Chem. Soc. 2012, 134, 18824.
- 21Y. Wei, J. Zhao, S. Fuhrmann, R. Sajzew, L. Wondraczek, H. Ebendorff-Heidepriem, Light Sci. Appl. 2023, 12, 293.
- 22S. Chen, J. Lin, S. Zheng, Y. Zheng, D. Chen, Adv. Funct. Materials 2023, 33, 2213442.
- 23C. G. Granqvist, Thin Solid Films 2014, 564, 1.
- 24Q.-Q. Wang, J.-B. Han, H.-M. Gong, D.-J. Chen, X.-J. Zhao, J.-Y. Feng, J.-J. Ren, Adv. Funct. Mater. 2006, 16, 2405.
- 25L. Wang, M. Hasanzadeh Kafshgari, M. Meunier, Adv. Funct. Mater. 2020, 30, 2005400.
- 26S. Li, P. Miao, Y. Zhang, J. Wu, B. Zhang, Y. Du, X. Han, J. Sun, P. Xu, Adv. Mater. 2021, 33, 2000086.
- 27A. Gabbani, C. Sangregorio, B. Tandon, A. Nag, M. Gurioli, F. Pineider, Nano Lett. 2022, 22, 9036.
- 28I. Kriegel, F. Scotognella, L. Manna, Phys. Rep. 2017, 674, 1.
- 29G. Zheng, W. Xiao, J. Wu, X. Liu, H. Masai, J. Qiu, Adv. Sci. 2022, 9, 2105713.
- 30H. Jia, R. Zhang, X. Niu, X. Zhang, H. Zhou, X. Liu, Z. Fang, F. Chang, B. Guan, J. Qiu, Adv. Sci. 2024, 11, 2309433.
- 31X. Feng, Y. Lun, X. Jiang, J. Qiu, H. Yu, S. Zhou, Adv. Mater. 2021, 33, 2006482.
- 32H. Jia, X. Zhang, Y. Zhu, Y. Zhang, Y. Hu, X. Xu, F. Peng, Y. Yuan, Z. Fang, J. Qiu, Ceram. Int. 2023, 49, 1283.
- 33I. Hussain, E. K. Barimah, Y. Iqbal, G. Jose, A. Zeb, R. Muhammad, Silicon 2021, 13, 877.
- 34C. R. Babu, A. V. Avani, T. S. Xavier, M. Tomy, S. Shaji, E. I. Anila, J. Energy Storage 2024, 80, 110382.
- 35H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, J. Appl. Phys. 1999, 86, 6451.
- 36M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend, F. Deschler, Nat. Commun. 2015, 6, 8420.
- 37C. Jiang, X. Wang, Q. Zhu, Q. Nie, M. Zhu, P. Zhang, S. Dai, X. Shen, T. Xu, C. Cheng, F. Liao, Z. Liu, X. Zhang, Infrared Phys. Technol. 2015, 73, 54.
- 38J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, Nat. Mater 2011, 10, 361.
- 39F. A. Samad, T. Mohamed, Appl. Phys. A 2023, 129, 31.
- 40D. Dini, M. J. F. Calvete, M. Hanack, Chem. Rev. 2016, 116, 13043.
- 41K. Wang, J. Wang, J. Fan, M. Lotya, A. O'Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, W. J. Blau, ACS Nano 2013, 7, 9260.
- 42H. Wang, Z. Hu, J. Deng, X. Zhang, J. Chen, K. Li, G. Li, Sci. Adv. 2024, 10, eadk3382.
- 43B. Yao, L. Ren, X. Hou, J. Opt. Soc. Am. B 2003, 20, 1290.
- 44F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 1988, 47, 347.
- 45P. Guo, R. D. Schaller, J. B. Ketterson, R. P. H. Chang, Nat. Photon 2016, 10, 267.
- 46Y. Yang, K. Y. Lau, J. Zheng, J. Dong, L. Wang, W. Wang, B. Xu, J. Qiu, X. Liu, Adv. Opt. Mater. 2023, 11, 2202900.
- 47Q. Guo, Z. Qin, Z. Wang, Y.-X. Weng, X. Liu, G. Xie, J. Qiu, ACS Nano 2018, 12, 12770.
- 48S. V. Ketov, Y. H. Sun, S. Nachum, Z. Lu, A. Checchi, A. R. Beraldin, H. Y. Bai, W. H. Wang, D. V. Louzguine-Luzgin, M. A. Carpenter, A. L. Greer, Nature 2015, 524, 200.
- 49F. Scotognella, G. D. Valle, A. R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, F. Tassone, Nano Lett. 2011, 11, 4711.
- 50X. Liu, D. Popa, N. Akhmediev, Phys. Rev. Lett. 2019, 123, 093901.
- 51J. Zhang, M. Gecevičius, M. Beresna, P. G. Kazansky, Phys. Rev. Lett. 2014, 112, 03901.
- 52H. Lin, T. Hu, Y. Cheng, M. Chen, Y. Wang, Laser Photonics Rev. 2018, 12, 1700344.
- 53C. J. Benmore, J. K. R. Weber, Adv. Phys.: X 2017, 2, 717.