Active Broadband Terahertz OAM-Based Metalens Based on Multi-Channel Multiplexing
Huijun Zhao
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorJiaxing Guo
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Fei Fan
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350 China
E-mail: [email protected]
Search for more papers by this authorYiming Wang
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorJing Liu
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorHao Wang
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorFan Li
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorYunyun Ji
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorJierong Cheng
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorShengjiang Chang
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350 China
Search for more papers by this authorHuijun Zhao
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorJiaxing Guo
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Fei Fan
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350 China
E-mail: [email protected]
Search for more papers by this authorYiming Wang
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorJing Liu
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorHao Wang
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorFan Li
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorYunyun Ji
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorJierong Cheng
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Search for more papers by this authorShengjiang Chang
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350 China
Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350 China
Search for more papers by this authorAbstract
Vortex beams with orbital angular momentum (OAM) exhibit immense potential in various fields such as communications, information processing, and optical tweezers. Nevertheless, current terahertz vortex beam generators still face challenges including narrow frequency bands, low efficiency, limited multiplexing capabilities, and difficulties in dynamic tuning. Here, the study introduces a new electrically controlled multi-channel multiplexing strategy that harnesses cascaded helical geometric metasurface, liquid crystal (LC) layer, and OAM-based metalens to achieve comprehensive and independent phase manipulation across all four spin channels. Moreover, by employing spin, spatial, OAM multiplexing, and the LC active control technology, eight distinguishable spin angular momentum (SAM)-OAM coupling states are decoded, enabling dynamic control of vortex beams with 6 different topological charges. Experimental validation reveals remarkable performance: within the broadband range of 0.4–0.6 THz, the vortex beams exhibit a peak excitation efficiency of up to 94%, with each mode purity reaching its highest level of >80%, and the minimum value of inter-mode coupling crosstalk is <–11 dB. This terahertz vortex beam generation and conversion mechanism enhances the operational flexibility in light field manipulation, breaking through the limitations of channel multiplexing and dynamic manipulation in the terahertz band, pioneering a novel avenue for bolstering parallel processing, mitigating inter-channel crosstalk.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202402084-sup-0001-SuppMat.pdf932.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Sengupta, T. Nagatsuma, D. M. Mittleman, Nat. Electron. 2018, 1, 622.
- 2G. Vallone, V. D'Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, P. Villoresi, Phys. Rev. Lett. 2014, 113, 060503.
- 3T. Bauer, S. Orlov, U. Peschel, P. Banzer, G. Leuchs, Nat. Photonics 2014, 8, 23.
- 4N. C. Zambón, P. St-Jean, M. Milićević, A. Lemaître, L. L. Gratiet, A. Harouri, I. Sagnes, O. Bleu, D. D. Solnyshkov, G. Malpuech, S. Ravets, A. Amo, J. Bloch, Nat. Photonics 2019, 13, 283.
- 5Y. Gao, S. Kaushik, E. J. Philip, Z. Li, Y. Qin, Y. P. Liu, W. L. Zhang, Y. L. Su, X. Chen, H. Weng, D. E. Kharzeev, M. K. Liu, J. Qi, Nat. Commun. 2020, 11, 720.
- 6B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, J. Zi, Nat. Photonics 2020, 14, 623.
- 7N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, Science 2013, 340, 1545.
- 8Z. X. Shen, M. J. Tang, P. Chen, S. H. Zhou, S. J. Ge, W. Duan, T. Wei, X. Liang, W. Hu, Y. Q. Lu, Adv. Opt. Mater. 2020, 8, 1902124.
- 9B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, B. O. Volodkin, Phys. Rev. Lett. 2015, 115, 163901.
- 10H. F. Zhang, X. Q. Zhang, Q. Xu, C. X. Tian, Q. Wang, Y. H. Xu, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, W. L. Zhang, Adv. Opt. Mater. 2018, 6, 1700773.
- 11R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso, Science 2017, 358, 896.
- 12J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso, Phys. Rev. Lett. 2017, 118, 113901.
- 13R. Z. Zhao, B. Sain, Q. S. Wei, C. C. Tang, X. W. Li, T. Weiss, L. L. Huang, Y. T. Wang, T. Zentgraf, Light Sci. Appl. 2018, 7, 95.
- 14H. L. Wang, H. F. Ma, M. Chen, S. Sun, T. J. Cui, Adv. Funct. Mater. 2021, 31, 2100275.
- 15E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon, Nat. Commun. 2018, 9, 812.
- 16G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, S. Zhang, Nat. Nanotechnol. 2015, 10, 308.
- 17D. Zhao, F. Fan, J. Y. Liu, Z. Y. Tan, H. Wang, Q. H. Yang, Q. Y. Wen, S. J. Chang, Optica 2023, 10, 1295.
- 18H. J. Zhao, F. Fan, Y. M. Wang, J. Liu, Y. Y. Ji, J. R. Cheng, S. J. Chang, Laser Photonics Rev. 2024, 18, 2400442.
- 19R. X. Zheng, R. H. Pan, G. Z. Geng, Q. Jiang, S. Du, Nat. Commun. 2022, 13, 4292.
- 20Q. M. Chen, G. Y. Qu, J. Yin, Y. H. Wang, Z. H. Ji, W. H. Yang, Y. J. Wang, Z. Yin, Q. H. Song, Y. Kivshar, S. M. Xiao, Nat. Nanotechnol. 2024, 19, 1000.
- 21T. H. Liu, W. H. Li, Y. Y. Meng, H. Ma, W. X. Tang, G. Q. Li, H. Y. Shi, S. Sui, J. F. Wang, S. B. Qu, Adv. Opt. Mater. 2022, 10, 2102638.
- 22Y. Y. Yuan, K. Zhang, B. Ratni, Q. H. Song, X. M. Ding, Q. Wu, S. N. Burokur, P. Genevet, Nat. Commun. 2020, 11, 4186.
- 23B. Xiong, Y. Liu, Y. H. Xu, L. Deng, C. W. Chen, J. N. Wang, R. W. Peng, Y. Lai, Y. M. Liu, M. Wang, Science 2023, 379, 294.
- 24Z. F. Zhang, X. D. Qiao, B. Midya, K. Liu, J. B. Sun, T. W. Wu, W. J. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, L. Feng, Science 2020, 368, 760.
- 25Z. Wang, Y. Yao, W. K. Pan, H. Y. Zhou, Y. Z. Chen, J. Lin, J. M. Hao, S. Y. Xiao, Q. He, S. L. Sun, L. Zhou, Adv. Sci. 2023, 10, 2205499.
- 26W. Zhu, Y. C. Fan, R. S. Yang, G. Z. Geng, Q. H. Fu, C. Z. Gu, J. J. Li, F. L. Zhang, Adv. Funct. Mater. 2022, 32, 2200013.
- 27Z. Y. Ma, T. Tian, Y. X. Liao, X. Feng, Y. Z. Li, K. Y. Cui, F. Liu, H. Sun, W. Zhang, Y. D. Huang, Nat. Commun. 2024, 15, 8370.
- 28J. T. Ji, C. Chen, J. C. Sun, X. Ye, Z. Z. Wang, J. Li, J. Y. Wang, W. G. Song, C. Y. Huang, K. Qiu, S. N. Zhu, T. Li, PhotoniX 2024, 5, 13.
- 29S. Liu, S. J. Ma, R. W. Shao, L. Zhang, T. Yan, Q. Ma, S. Zhang, T. J. Cui, Sci. Adv. 2022, 8, eabo1511.
- 30F. Mei, G. Y. Qu, X. B. Sha, J. Han, M. X. Yu, H. Li, Q. M. Chen, Z. H. Ji, J. C. Ni, C. W. Qiu, Q. H. Song, Y. R. Kivshar, S. M. Xiao, Nat. Commun. 2023, 14, 6410.
- 31N. Li, S. L. Zheng, H. Yang, T. He, D. H. Shen, H. Q. Zhang, Z. M. Yang, Z. Lyu, L. Zhang, X. B. Yu, IEEE Trans. Microw. Theory Tech. 2024, 72, 1302.
- 32Z. Jiang, J. H. Lu, J. Y. Fan, J. X. Liang, M. Zhang, H. Su, L. Zhang, H. W. Liang, Laser Photonics Rev. 2023, 17, 2200484.
- 33K. Y. Guo, J. H. Xin, Z. Y. Song, J. Phys. D: Appl. Phys. 2025, 58, 065109.
- 34Z. Y. Xu, J. X. Yang, Z. Y. Song, Opt. Laser Eng. 2025, 184, 108641.
- 35Z. Jiang, J. H. Lu, J. Y. Fan, J. Y. Liang, M. Zhang, H. Su, L. Zhang, H. W. Liang, Laser Photonics Rev. 2023, 17, 2200484.
- 36W. Y. Liu, X. H. Jiang, Q. Xu, F. Huang, Q. L. Yang, Y. C. Lu, Y. F. Gu, J. Q. Gu, J. G. Han, W. L. Zhang, Laser Photonics Rev. 2024, 18, 2301061.
- 37P. Chen, L. L. Ma, W. Hu, Z. X. Shen, H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li, Y. Q. Lu, Nat. Commun. 2019, 10, 2518.
- 38L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, Y. Q. Lu, Light Sci. Appl. 2015, 4, e253.
- 39W. L. Li, X. M. Hu, J. B. Wu, K. B. Fan, B. W. Chen, C. H. Zhang, W. Hu, X. Cao, B. B. Jin, Y. Q. Lu, J. Chen, P. H. Wu, Light Sci. Appl. 2022, 11, 191.
- 40Z. G. Zheng, Y. N. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, Q. Li, Nature 2016, 531, 352.
- 41S. Wang, H. B. Guo, B. W. Chen, X. Y. Hu, W. Zhu, J. B. Wu, C. H. Zhang, K. B. Fan, H. B. Wang, B. B. Jin, J. Chen, P. H. Wu, Laser Photonics Rev. 2024, 18, 2301301.
- 42M. G. Nassiri, E. Brasselet, Phys. Rev. Lett. 2018, 121, 213901.
- 43W. L. Li, B. W. Chen, X. Y. Hu, H. B. Guo, S. Wang, J. B. Wu, K. B. Fan, C. H. Zhang, H. B. Wang, B. B. Jin, J. Chen, P. H. Wu, Sci. Adv. 2023, 9, eadi7565.
- 44Q. G. Wang, S. J. Ge, H. G. Yu, W. Hu, Laser Photonics Rev. 2024, 18, 2400869.
- 45H. Zhang, X. B. Sha, Q. M. Chen, J. P. Cheng, Z. H. Ji, Q. H. Song, S. H. Yu, S. M. Xiao, Adv. Mater. 2022, 34, 2109255.
- 46G. Isic, B. Vasic, D. C. Zografopoulos, R. Beccherelli, R. Gajic, Phys. Rev. A 2015, 3, 064007.
10.1103/PhysRevApplied.3.064007 Google Scholar
- 47C. C. Chen, W. F. Chiang, M. C. Tsai, S. A. Jiang, T. H. Chang, S. H. Wang, C. Y. Huang, Opt. Lett. 2015, 40, 2021.
- 48B. S. Y. Ung, X. D. Liu, E. P. J. Parrott, A. K. Srivastava, H. Park, V. G. Chigrinov, E. Pickwell-MacPherson, IEEE Trans. Thz. Sci. Techn. 2018, 8, 209.