High Speed Evanescent Quantum-Dot Lasers on Si
Yating Wan
Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorChao Xiang
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorJoel Guo
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorRosalyn Koscica
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorMJ Kennedy
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorJennifer Selvidge
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorZeyu Zhang
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorLin Chang
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorWeiqiang Xie
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorDuanni Huang
Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA, 95054 USA
Search for more papers by this authorArthur C. Gossard
Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorCorresponding Author
John E. Bowers
Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
E-mail: [email protected]
Search for more papers by this authorYating Wan
Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorChao Xiang
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorJoel Guo
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorRosalyn Koscica
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorMJ Kennedy
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorJennifer Selvidge
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorZeyu Zhang
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorLin Chang
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorWeiqiang Xie
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorDuanni Huang
Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA, 95054 USA
Search for more papers by this authorArthur C. Gossard
Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorCorresponding Author
John E. Bowers
Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
Materials department, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Significant improvements in III–V/Si epitaxy have pushed quantum dots (QDs) to the forefront of Si photonics. For efficient, scalable, and multifunctional integrated systems to be developed, a commercially viable solution must be found to allow efficient coupling of the QD laser output to Si waveguides. In this work, the design, fabrication, and characterization of such a platform are detailed. Record-setting evanescent QD distributed feedback lasers on Si with a 3 dB modulation bandwidth of 13 GHz, a threshold current of 4 mA, a side-mode-suppression-ratio of 60 dB, and a fundamental linewidth of 26 kHz, are reported. The maximum temperature during the backend III/V process is only 200 °C, which is fully compatible with CMOS process thermal budgets. The whole process is substrate agnostic and hence can leverage previous development in QD lasers grown on Si and benefit from the economy of scale. The broadband and versatile nature of the QD lasers and the Si-on-insulator low-loss waveguiding platform can be expanded to build fully functional photonic integrated circuits throughout the O band.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1M. Smit, J. van der Tol, M. Hill, Laser Photonics Rev. 2012, 6, 1.
- 2Industry-First Co-Packaged Optics Ethernet Switch Solution with Intel Silicon Photonics - IT Peer Network, https://itpeernetwork.intel.com/optics-ethernet-solution/#gs.ptx0x7 (accessed: January 2021).
- 3K. Asakawa, Y. Sugimoto, S. Nakamura, Opto-Electron. Adv. 2020, 3, 20001101.
10.29026/oea.2020.200011 Google Scholar
- 4R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, J. E. Bowers, IEEE Nanotechnol. Mag. 2019, 13, 17.
- 5J. C. Norman, D. Jung, Y. Wan, J. E. Bowers, APL Photonics 2018, 3, 030901.
- 6J.-S. Park, M. Tang, S. Chen, H. Liu, Crystals 2020, 10, 1163.
- 7Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, J. Zhang, Q. Feng, W. Wei, B. Zhang, H. Wang, J. Wang, H. Cong, T. Wang, J. Zhang, Appl. Sci. 2019, 9, 385.
- 8J. Kwoen, B. Jang, K. Watanabe, Y. Arakawa, Opt. Express 2019, 27, 2681.
- 9J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers, IEEE J. Quantum Electron. 2019, 55, 1.
- 10Y. Han, Y. Xue, Z. Yan, K. M. Lau, J. Lightwave Technol. 2020, 39, 940.
- 11Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, D. Van Thourhout, Optica 2017, 4, 1468.
- 12Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, J. E. Bowers, Laser Photonics Rev. 2020, 14, 2000037.
- 13Z. Zhang, J. C. Norman, S. Liu, A. Malik, J. E. Bowers, Photonics Res. 2020, 8, 1428.
- 14Y. Su, Y. Zhang, C. Qiu, X. Guo, L. Sun, Adv. Mater. Technol. 2020, 5, 1901153.
- 15J. M. Ramirez, H. Elfaiki, T. Verolet, C. Besancon, A. Gallet, D. Néel, K. Hassan, S. Olivier, C. Jany, S. Malhouitre, K. Gradkowski, P. E. Morrissey, P. O'Brien, C. Caillaud, N. Vaissière, J. Decobert, S. Lei, R. Enright, A. Shen, M. Achouche, IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1.
- 16O. Marshall, M. Hsu, Z. Wang, B. Kunert, C. Koos, D. Van Thourhout, Proc. IEEE 2018, 106, 2258.
- 17X. Guo, A. He, Y. Su, J. Semicond. 2019, 40, 40.
- 18A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, Opt. Express 2006, 14, 9203.
- 19S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh Asl, N. N. Tang, H. Potluri, M. Montazeri, H. Frish, R. A. Defrees, C. S. Seibert, A. Krichevsky, J. Doylend, J. M. Heck, A. Vardapetyan, G. Kaur, M. Cen, V. Kulkarni, S. S. Islam, S. Garag, A. C. Alduino, R. Chiou, Y. Akulova, D. Zhu, T. Liljeberg, L. Liao, J. Lightwave Technol. 2020, 39, 1155.
- 20Y. H. Jhang, K. Tanabe, S. Iwamoto, Y. Arakawa, IEEE Photonics Technol. Lett. 2015, 27, 875.
- 21G. Kurczveil, M. A. Seyedi, D. Liang, M. Fiorentino, R. G. Beausoleil, IEEE Photonics Technol. Lett. 2017, 30, 71.
- 22S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, G. Roelkens, Opt. Express 2018, 26, 18302.
- 23G. Kurczveil, M. A. Seyedi, D. Liang, M. Fiorentino, R. G. Beausoleil, IEEE Photon. Technol. Lett. 2017, 30, 71.
- 24C. Zhang, D. Liang, G. Kurczveil, A. Descos, R. G. Beausoleil, Optica 2019, 6, 1145.
- 25A. Malik, J. Guo, M. A. Tran, G. Kurczveil, D. Liang, J. E. Bowers, Photonics Res. 2020, 8, 1551.
- 26D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, J. E. Bowers, ACS Photonics 2017, 5, 1094.
- 27D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, J. E. Bowers, Appl. Phys. Lett. 2017, 111, 122107.
- 28Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers, Optica 2017, 4, 940.
- 29L. A. Coldren, S. W. Corzine, M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, New York 2012.
10.1002/9781118148167 Google Scholar
- 30M. Yamada, K. Sakuda, Appl. Opt. 1987, 26, 3474.
- 31Y.-Y. Ding, Z.-R. Lv, Z.-K. Zhang, H.-H. Yuan, T. Yang, Appl. Opt. 2020, 59, 1648.
- 32C. Hantschmann, P. P. Vasil'Ev, A. Wonfor, S. Chen, M. Liao, A. J. Seeds, H. Liu, R. V. Penty, I. H. White, J. Lightwave Technol. 2019, 37, 949.
- 33K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, Y. Arakawa, Electron. Lett. 2011, 47, 206.
- 34Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, J. E. Bowers, Photonics Res. 2018, 6, 776.
- 35Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J. He, H. K. Tsang, A. C. Gossard, J. E. Bowers, Laser Photonics Rev. 2020, 14, 1900348.
- 36T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, G. Eisenstein, Optica 2019, 6, 1071.
- 37A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, J. E. Bowers, Opt. Express 2008, 16, 4413.
- 38H. Su, L. F. Lester, J. Phys. D: Appl. Phys. 2005, 38, 2112.
- 39J. Kim, S. L. Chuang, IEEE J. Quantum Electron. 2006, 42, 942.
- 40S. Dhoore, A. Köninger, R. Meyer, G. Roelkens, G. Morthier, Laser Photonics Rev. 2019, 13, 1800287.
- 41P. P. G. Mols, P. L. Kuindersma, W. Van Es-Spiekman, I. A. F. Baele, IEEE J. Quantum Electron. 1989, 25, 1303.
- 42Y. Matsui, R. Schatz, D. Che, F. Khan, M. Kwakernaak, T. Sudo, Nat. Photonics 2021, 15, 59.
- 43A. Abbasi, B. Moeneclaey, J. Verbist, X. Yin, J. Bauwelinck, G. H. Duan, G. Roelkens, G. Morthier, IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1.
- 44V. Cristofori, F. Da Ros, M. E. Chaibi, Y. Ding, L. Bramerie, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, L. K. Oxenlowe, C. Peucheret, 14th Int. Conf. on Group IV Photonics (GFP 2017), IEEE, Berlin, Germany 2017, p. 103.
- 45C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton, J. E. Bowers, Optica 2019, 7, 20.
- 46D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, J. E. Bowers, Optica 2019, 6, 745.
- 47M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1.
- 48C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, R. G. Beausoleil, IEEE J. Sel. Top. Quantum Electron. 2015, 21, 385.