Broadband Antireflection with Halide Perovskite Metasurfaces
Corresponding Author
Kseniia Baryshnikova
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
E-mail: [email protected]; [email protected]
Search for more papers by this authorDmitry Gets
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorTatiana Liashenko
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorAnatoly Pushkarev
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorIvan Mukhin
Alferov University (former St. Petersburg Academic University), St. Petersburg, 194021 Russia
Search for more papers by this authorYuri Kivshar
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Nonlinear Physics Center, Australian National University, Canberra, ACT, 2601 Australia
Search for more papers by this authorCorresponding Author
Sergey Makarov
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kseniia Baryshnikova
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
E-mail: [email protected]; [email protected]
Search for more papers by this authorDmitry Gets
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorTatiana Liashenko
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorAnatoly Pushkarev
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorIvan Mukhin
Alferov University (former St. Petersburg Academic University), St. Petersburg, 194021 Russia
Search for more papers by this authorYuri Kivshar
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Nonlinear Physics Center, Australian National University, Canberra, ACT, 2601 Australia
Search for more papers by this authorCorresponding Author
Sergey Makarov
Department of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Meta-optics based on optically resonant dielectric nanostructures is a rapidly developing research field with many potential applications. Halide perovskite metasurfaces have emerged recently as a novel platform for meta-optics, and they offer unique opportunities for control of light in optoelectronic devices. Here, the generalized Kerker conditions are employed to overlap electric and magnetic Mie resonances in each meta-atom of MAPbBr3 perovskite metasurface, and broadband suppression of reflection down to 4% is demonstrated. Furthermore, it is revealed that metasurface nanostructuring is also beneficial for the enhancement of photoluminescence. These results may be useful for applications of nanostructured halide perovskites in photovoltaics and semi-transparent multifunctional metadevices where reflection reduction is important for their high efficiency.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
lpor202000338-sup-0001-SuppMat.pdf5.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. S. Berestennikov, P. M. Voroshilov, S. V. Makarov, Y. S. Kivshar, Appl. Phys. Rev. 2019, 6, 031307.
- 2B. Gholipour, G. Adamo, D. Corecchia, H. N. S. Krishnamoorthy, M. D. Birowosuto, N. I. Zheludev, C. Soci, Adv. Mater. 2017, 29, 1604268.
- 3S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, A. A. Zakhidov, ACS Photonics 2017, 4, 728.
- 4E. Y. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, Y. S Kivshar, Nano Lett. 2018, 18, 1185.
- 5Y. Gao, C. Huang, C. Hao, S. Sun, L. Zhang, C. Zhang, Z. Duan, K. Wang, Z. Jin, N. Zhang, A. V. Kildishev, C.-W. Qiu, Q. Song, S. Xiao, ACS Nano 2018, 12, 8847.
- 6C. Zhang, S. Xiao, Y. Wang, Y. Gao, Y. Fan, C. Huang, N. Zhang, W. Yang, Q. Song, Laser Photonics Rev. 2019, 13, 1900079.
- 7Y. Fan, Y. Wang, N. Zhang, W. Sun, Y. Gao, C.-W. Qiu, Q. Song, S. Xiao, Nat. Commun. 2019, 10, 2085.
- 8A. Y. Zhizhchenko, P. Tonkaev, D. Gets, A. Larin, D. Zuev, S. Starikov, E. V. Pustovalov, A. M. Zakharenko, S. A. Kulinich, S. Juodkazis, S. V. Makarov, Small 2020, 16, 2000410.
- 9N. Zhang, Y. Fan, K. Wang, Z. Gu, Y. Wang, L. Ge, S. Xiao, Q. Song, Nat. Commun. 2019, 10, 1770.
- 10E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. S. Kivshar, S. V. Makarov, ACS Nano 2020, 14, 8149.
- 11C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, Q. Song, Science 2020, 367, 1018.
- 12Y. Liu, W. Yang, S. Xiao, N. Zhang, Y. Fan, G. Qu, Q. Song, ACS Nano 2019, 13, 10653.
- 13A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, A. Di Carlo, Adv. Opt. Mater. 2018, 6, 1800576.
- 14C. Pfeiffer, A. Grbic, Phys. Rev. Lett. 2013, 110, 197401.
- 15M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, Adv. Opt. Mater. 2015, 3, 813.
- 16A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk'yanchuk, Science 2016, 354, aag2472.
- 17I. Staude, J. Schilling, Nat. Photonics 2017, 11, 274.
- 18M. L. De Marco, S. Semlali, B. A. Korgel, P. Barois, G. L. Drisko, C. Aymonier, Angew. Chem., Int. Ed. 2018, 57, 4478.
- 19K. V. Baryshnikova, M. I. Petrov, V. E. Babicheva, P. A. Belov, Sci. Rep. 2016, 6, 22136.
- 20Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk'yanchuk, A. I. Kuznetsov, Laser Photonics Rev. 2015, 9, 412.
- 21L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, Y. S. Kivshar, Optica 2016, 3, 1504.
- 22S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, S. I. Seok, Energy Environ. Sci. 2014, 7, 2614.
- 23M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, A. L. Rogach, Adv. Funct. Mater. 2019, 29, 1902008.
- 24E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, S. V. Makarov, Nano Lett. 2018, 18, 5522.
- 25A. Berestennikov, Y. Li, I. Iorsh, A. Zakhidov, A. Rogach, S. Makarov, Nanoscale 2019, 11, 5522.
- 26M. Kerker, D. S. Wang, C. L. Giles, JOSA 1983, 73, 765.
- 27R. Gomez-Medina, B. Garcia-Camara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, J. J. Sáenz, J. Nanophotonics 2011, 5, 053512.
- 28S. Kruk, Y. Kivshar, in Dielectric Metamaterials, Woodhead Publishing, Sawston, UK 2020, p. 145.
10.1016/B978-0-08-102403-4.00010-4 Google Scholar
- 29R. Dezert, P. Richetti, A. Baron, Phys. Rev. B 2017, 96, 180201.
- 30P. D. Terekhov, H. K. Shamkhi, E. A. Gurvitz, K. V. Baryshnikova, A. B. Evlyukhin, A. S. Shalin, A. Karabchevsky, Opt. Express 2019, 27, 10924.
- 31C. Y. Yang, J. H. Yang, Z. H. Yang, Z. X. Zhou, M. G. Sun, V. E. Babicheva, K. P. Chen, ACS Photonics 2018, 5, 2596.
- 32T. Wriedt, The Mie Theory, Springer-Verlag, Heidelberg, Germany 2012, p. 53.
10.1007/978-3-642-28738-1_2 Google Scholar
- 33W. Liu, Y. S. Kivshar, Opt. Express 2018, 26, 13085.
- 34A. Pors, S. K. H. Andersen, S. I. Bozhevolnyi, Opt. Express 2015, 23, 28808.
- 35Y. Wang, Z. Gu, Y. Ren, Z. Wang, B. Yao, Z. Dong, G. Adamo, H. Zeng, H. Sun, ACS Appl. Mater. Interfaces 2019, 11, 15756.
- 36A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, Y. Kivshar, Appl. Phys. Lett. 2016, 108, 211105.
- 37H. B. Kim, Y. J. Yoon, J. Jeong, J. Heo, H. Jang, J. H. Seo, B. Walker, J. Y. Kim, Energy Environ. Sci. 2017, 10, 1950.
- 38D. Gets, D. Saranin, A. Ishteev, R. Haroldson, E. Danilovskiy, S. Makarov, A. Zakhidov, Appl. Surf. Sci. 2019, 476, 486.
- 39H. Wang, R. Haroldson, B. Balachandran, A. Zakhidov, S. Sohal, J. Y. Chan, A. Zakhidov, W. Hu, ACS Nano 2016, 10, 10921.
- 40A. Zhizhchenko, S. Syubaev, A. Berestennikov, A. V. Yulin, A. Porfirev, A. Pushkarev, I. Shishkin, K. Golokhvast, A. Bogdanov, A. A. Zakhidov, A. Kuchmizhak, Y. Kivshar, S. Makarov, ACS Nano 2019, 13, 4140.
- 41Z. Duan, J. Ning, M. Chen, Y. Xiong, W. Yang, F. Xiao, S. Kershaw, N. Zhao, S. Xiao, A. L. Rogach, ACS Appl. Mater. Interfaces 2020, 12, 35201.
- 42A. A. Evstrapov, I. S. Mukhin, A. S. Bukatin, I. V. Kukhtevich, Nucl. Instrum. Methods Phys. Res., Sect. B 2012, 282, 145.