Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber
Van Duong Ta
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorRui Chen
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorLin Ma
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorYong Jun Ying
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorCorresponding Author
Han Dong Sun
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Centre for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore
Corresponding author(s): e-mail: [email protected]Search for more papers by this authorVan Duong Ta
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorRui Chen
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorLin Ma
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorYong Jun Ying
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Search for more papers by this authorCorresponding Author
Han Dong Sun
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
Centre for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore
Corresponding author(s): e-mail: [email protected]Search for more papers by this authorAbstract
The realization of whispering gallery mode (WGM) lasing in polymer fibers is hindered by an appropriate method to dissolve the polymer and the gain material. In this work, microfibers fabricated by directly drawing from a dye doped polymer solution are exhibited as high quality microlasers and microsensors. Multi-mode and even single-mode lasing is observed from the fiber under optical pumping at room temperature. The linewidth of lasing mode is narrower than 0.09 nm. The lasing mechanism is unambiguously verified by comprehensive spectroscopic analysis and ascribed to WGMs. Diameter- and polarization-dependent lasing characteristics are systematically investigated, showing good agreement with the theoretical calculation. Particularly, application of the fiber laser for refractive index sensing based on resonant shift of lasing mode is demonstrated and the sensitivity up to about 300 nm/RIU is achieved. The promising potential of high quality polymer microfibers as optical sensors and multi-function components for flexible photonic integrated systems is highly expected.
Supporting Information
Disclaimer: Supplementary materials have been peer-reviewed but not copyedited.
Filename | Description |
---|---|
lpor201200074-sup-0001-FigureS1.pdf5.5 MB | Supplementary FigureS1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Chen, D. Li, B. Liu, Z. Peng, G. G. Gurzadyan, Q. Xiong, and H. D. Sun, Nano Lett. 10, 4956–4961 (2010).
- 2Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, Adv. Mater. 15, 353–389 (2003).
- 3R. Yan, D. Gargas, and P. Yang, Nat. Photonics 3, 569–576 (2009).
- 4R. Chen, M. I. Bakti Utama, Z. Peng, B. Peng, Q. Xiong, and H. D. Sun, Adv. Mater. 23, 1404–1408 (2011).
- 5M. O'Neill and S. M. Kelly, Adv. Mater. 23, 566–584 (2011).
- 6B. Kang, S. Ko, J. Kim, and M. Yang, Opt. Express 19, 2573–2579 (2011).
- 7D. Pile, Nat. Photonics 5, 199–199 (2011).
- 8J. Kameoka and H. G. Craighead, Appl. Phys. Lett. 83, 371–373 (2003).
- 9D. Li, G. Ouyang, J. T. McCann, and Y. N. Xia, Nano Lett. 5, 913–916 (2005).
- 10J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruna, G. G. Malliaras, and H. G. Craighead, Nano Lett. 7, 458–463 (2007).
- 11F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, Nat. Nanotechnol. 3, 614–619 (2008).
- 12A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, Small 5, 562–566 (2009).
- 13S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, Nano Lett. 4, 1931–1937 (2004).
- 14X. Xing, Y. Wang, and B. Li, Opt. Express 16, 10815–10822 (2008).
- 15F. Gu, L. Zhang, X. F. Yin, and L. M. Tong, Nano Lett. 8, 2757–2761 (2008).
- 16H. Zhu, Y. Q. Wang, and B. J. Li, ACS Nano 3, 3110–3114 (2009).
- 17C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, Adv. Mater. 23, 3770–3774 (2011).
- 18H. Q. Yu, D. W. Liao, M. B. Johnston, and B. J. Li, ACS Nano 5, 2020–2025 (2011).
- 19K. J. Lee, J. H. Oh, Y. Kim, and J. Jang, Adv. Mater. 18, 2216–2219 (2006).
- 20M. Hamedi, R. Forchheimer, and O. Inganas, Nat. Mater. 6, 357–362 (2007).
- 21D. O'Carroll, I. Lieberwirth, and G. Redmond, Nat. Nanotechnol. 2, 180–184 (2007).
- 22K. J. Vahala, Nature 424, 839–846 (2003).
- 23M. Humar, M. Ravnik, S. Pajk, and I. Musevic, Nat. Photonics 3, 595–600 (2009).
- 24H. J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, Appl. Phys. Lett. 76, 3679–3681 (2000).
- 25R. Chen, B. Ling, X. W. Sun, and H. D. Sun, Adv. Mater. 23, 2199–2204 (2011).
- 26S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, Appl. Phys. Lett. 72, 2811–2813 (1998).
- 27M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, Opt. Lett. 20, 2093–2095 (1995).
- 28A. J. Das, C. Lafargue, M. Lebental, J. Zyss, and K. S. Narayan, Appl. Phys. Lett. 99, 263303–263303 (2011).
- 29V. D. Ta, R. Chen, and H. D. Sun, Adv. Mater. 24, OP60–OP64 (2012).
- 30A. P. Suryavanshi, J. Hu, and M. F. Yu, Adv. Mater. 20, 793–796 (2008).
- 31R. Chen, V. D. Ta, and H. D. Sun, Sci. Rep. 2, 244 (2012).
- 32S. K. Y. Tang, R. Derda, Q. Quan, M. Loncar, and G. M. Whitesides, Opt. Express 19, 2204–2215 (2011).
- 33R. K. Chang and Y. L. Pan, Faraday Discuss. 137, 9–36 (2008).
- 34C. C. Lam, P. T. Leung, and K. Young, J. Opt. Soc. Am. B 9, 1585–1592 (1992).
- 35J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, Nano Lett. 8, 1709–1712 (2008).
- 36L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, Appl. Phys. Lett. 88, 121110–121113 (2006).
- 37C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zúñiga-Pérez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, Phys. Status Solidi B 247, 1282–1293 (2010).
- 38F. Vollmer and S. Arnold, Nat. Methods 5, 591–596 (2008).
- 39M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, Appl. Phys. Lett. 99, 073701 (2011).
- 40S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, Microfluid. Nanofluid. 6, 425–429 (2009).
- 41T. M. Aminabhavi and B. Gopalakrishna, J. Chem. Eng. Data 40, 856–861 (1995).