Characteristics and driving mechanism of wetland landscape pattern change in karst region of southwest China over past 35 years: A case study of Caohai wetland in Guizhou
Guiting Mu
College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
Search for more papers by this authorXimei Wen
Guizhou Institute of Mountain Resource, Guizhou Academy of Sciences, Guiyang, China
Search for more papers by this authorCorresponding Author
Zhenming Zhang
College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
Correspondence
Zhenming Zhang, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
Email: [email protected]
Search for more papers by this authorGuiting Mu
College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
Search for more papers by this authorXimei Wen
Guizhou Institute of Mountain Resource, Guizhou Academy of Sciences, Guiyang, China
Search for more papers by this authorCorresponding Author
Zhenming Zhang
College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
Correspondence
Zhenming Zhang, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
Email: [email protected]
Search for more papers by this authorAbstract
To uncover the process of land use change and its driving mechanism of typical wetland ecosystems in the karst region, this thesis conducts a case study on Caohai National Nature Reserve (hereafter referred to as Caohai). With the support of geo-information technology and the landscape index analysis method, it quantitatively analyzes the magnitudes, speed, and landscape patterns of land use changes over 35 years from 1985 to 2020 using continuous remote sensing images. The results show that the land use structure of Caohai has mainly undergone mutual conversion between farmland and wetland. Before 2005, 164.60 ha of farmland were converted to wetland, from 2005 to 2015, 451.79 ha of wetland were converted to farmland, and from 2015 to 2020, 979.62 ha of farmland were transformed into wetland. The trend for construction land was to decrease first and then increase, with increased construction land primarily coming from farmland and partially from shrubland and forestland. The spatial connectivity of landscape distribution showed a slow decrease to a rapid decrease, then increased and reduced again, while diversity and evenness showed the opposite trend. Rational policies and urban construction planning are essential measures for protecting wetland ecosystems in the karst region.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
REFERENCES
- An, S. C. (2008). Overview of Weining Yi, Hui, and Miao Autonomous County (pp. 1–36). Nationalities Publishing House (In Chinese).
- Ao, D. X., & Yang, J. T. (2022). Bijie statistical yearbook in 2021. China Statistics Press (In Chinese).
- Asenso Barnieh, B., Jia, L., Menenti, M., Zhou, J., & Zeng, Y. (2020). Mapping land use land cover transitions at different spatiotemporal scales in West Africa. Sustainability, 12(20), 1–52. https://doi.org/10.3390/su12208565
- Bai, G. C., Xia, J. G., Wang, C. Q., Chen, W. K., & Yang, J. (2009). Land use transition in Dongpo District, Meishan City in China based on a tendentious model for analyzing spatial transition of land use types. Resources Science, 31(10), 1793–1799. 31.10/10-1793 (In Chinese).
- Canedoli, C., Ficetola, G. F., Corengia, D., Tognini, P., Ferrario, A., & Padoa-Schioppa, E. (2022). Integrating landscape ecology and the assessment of ecosystem services in the study of karst areas. Landscape Ecology, 37, 347–365. https://doi.org/10.1007/s10980-021-01351-2
- Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655, 707–719. https://doi.org/10.1016/j.scitotenv.2018.11.267
- Davison, C. W., Rahbek, C., & Morueta-Holme, N. (2021). Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Global Change Biology, 27(21), 5414–5429. https://doi.org/10.1111/gcb.15846
- Deng, L., Liu, G., & Shangguan, Z. (2014). Land-use conversion and changing soil carbon stocks in China's “Grain-for-Green” program: A synthesis. Global Change Biology, 20(11), 3544–3556. https://doi.org/10.1111/gcb.12508
- Fluet-Chouinard, E., Stocker, B. D., Zhang, Z., Malhotra, A., Melton, J. R., Poulter, B., Kaplan, J. O., Goldewijk, K. K., Siebert, S., & Minayeva, T. (2023). Extensive global wetland loss over the past three centuries. Nature, 614, 281–286. https://doi.org/10.1038/s41586-022-05572-6
- Gong, B. H., & Liu, Z. F. (2020). Assessing impacts of land use policies on environmental sustainability of oasis landscapes with scenario analysis: The case of northern China. Landscape Ecology, 36, 1913–1932. https://doi.org/10.1007/s10980-020-01065-x
- Guo, B., Luo, W., & Zang, W. (2020). Spatial–temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference. Science of the Total Environment, 741(140), 256. https://doi.org/10.1016/j.scitotenv.2020.140256
10.1016/j.scitotenv.2020.140256 Google Scholar
- Kelarestaghi, A., & Jafarian, Z. J. (2011). Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arabian Journal of Geosciences, 4(3–4), 401–411. https://doi.org/10.1007/s12517-009-0078-5
- Li, X. L., He, X. L., Yang, G., Liu, H. G., Long, A. H., Chen, F. L., Liu, B., & Gu, X. C. (2020). Land use/cover and landscape pattern changes in Manas River basin based on remote sensing. International Journal of Agricultural and Biological Engineering, 13(5), 141–152. https://doi.org/10.25165/j.ijabe.20201305.4783
- Liu, J. Y., Liu, M. Y., Zhuang, D. F., Deng, X. Z., & Zhang, Z. X. (2002). Analysis of the spatial pattern of recent land use changes in China. Science in China (Series D: Earth Sciences), 12, 1031–1040. +1058–1060 (In Chinese).
- Liu, P., Hu, Y., & Jia, W. (2021). Land use optimization research based on FLUS model and ecosystem services–setting Jinan City as an example. Urban Climate, 40(100), 984. https://doi.org/10.1016/j.uclim.2021.100984
10.1016/j.uclim.2021.100984 Google Scholar
- Liu, X. P., Liang, X., Li, X., Xu, X. C., Ou, J. P., Chen, Y. M., Li, S. Y., Wang, S. J., & Pei, F. S. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94–116. https://doi.org/10.1016/j.landurbplan.2017.09.019/
- Long, Y. C., Jiang, J., Wu, B., Hu, J., Zhang, Z. M., & Zhou, S. Q. (2022). Phosphatase phoD gene community changes organic phosphorus in sediment from Caohai plateau wetland. Journal of Soils and Sediments, 22, 2317–2328. https://doi.org/10.1007/s11368-022-03245-5
- Lu, X. H., Li, Y. F., Wang, H. L., Singh, B. P., Hu, S. D., Luo, Y., Li, J. W., Xiao, Y. H., Cai, X. Q., & Li, Y. C. (2019). Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agricultural and Forest Meteorology, 271, 168–179. https://doi.org/10.1016/j.agrformet.2019.03.001
- Mao, D. H., Tian, Y. L., Wang, Z. M., Jia, M. M., Du, J., & Song, C. C. (2021). Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. Journal of Environmental Management, 280(111), 670. https://doi.org/10.1016/j.jenvman.2020.111670
10.1016/j.jenvman.2020.111670 Google Scholar
- Marques, A., Martins, I. S., Kastner, T., Plutzar, C., Theurl, M. C., Eisenmenger, N., & Pereira, H. M. (2019). Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology & Evolution, 3(4), 628–637. https://doi.org/10.1038/s41559-019-0824-3
- Meyfroidt, P., Lambin, E. F., Erb, K., & Hertel, T. W. (2013). Globalization of land use: Distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 5(5), 438–444. https://doi.org/10.1016/j.cosust.2013.04.003
- Mirghaed, F. A., & Souri, B. (2022). Spatial analysis of soil quality through landscape patterns in the Shoor River Basin, Southwestern Iran. Catena, 211(106), 028. https://doi.org/10.1016/j.catena.2022.106028
10.1016/j.catena.2022.106028 Google Scholar
- Peng, J., Jiang, H., Liu, Q., Green, S. M., Quine, T. A., Liu, H., & Meersmans, J. (2021). Human activity vs. climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Science of the Total Environment, 769, 144–297. https://doi.org/10.1016/j.scitotenv.2020.144297
- Powers, R. P., & Jetz, W. (2019). Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change, 9(4), 1–329. https://doi.org/10.1038/s41558-019-0406-z
- Quan, R. S., Liu, M., Lu, M., Zhang, L. J., Wang, J. J., & Xu, S. Y. (2010). Waterlogging risk assessment based on land use/cover change: A case study in Pudong New Area, Shanghai. Environmental Earth Sciences, 61(6), 1113–1121. https://doi.org/10.1007/s12665-009-0431-8
- Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84. https://doi.org/10.1016/j.ejrs.2015.02.002
10.1016/j.ejrs.2015.02.002 Google Scholar
- Roger, A., & Pielke, S. (2005). Atmospheric science: Land use and climate change. Science, 310(5754), 1625–1626. https://doi.org/10.1126/science.1120529
- Santos, M. J., Smith, A. B., Dekker, S. C., Eppinga, M. B., Leitão, P. J., Moreno-Mateos, D., Morueta-Holme, N., & Ruggeri, M. (2021). The role of land use and land cover change in climate change vulnerability assessments of biodiversity: A systematic review. Landscape Ecology, 36, 3367–3382. https://doi.org/10.1007/s10980-021-01276-w
- Shirkey, G., John, R., Chen, J. Q., Kolluru, V., Amirkhiz, R. G., Marquart-Pyatt, S. T., Cooper, L. T., & Collins, M. (2023). Land cover change and socioecological influences on terrestrial carbon production in an agroecosystem. Landscape Ecology, 1–23, 3845–3867. https://doi.org/10.1007/s10980-023-01647-5
10.1007/s10980-023-01647-5 Google Scholar
- Taddeo, S., & Dronova, I. (2020). Landscape metrics of post-restoration vegetation dynamics in wetland ecosystems. Landscape Ecology, 35, 275–292. https://doi.org/10.1007/s10980-019-00946-0
- Van der Sluis, T., Pedroli, B., Frederiksen, P., Kristensen, S. B. P., Busck, A. G., Pavlis, V., & Cosor, G. L. (2018). The impact of European landscape transitions on the provision of landscape services: An explorative study using six cases of rural land change. Landscape Ecology, 34(2), 307–323. https://doi.org/10.1007/s10980-018-0765-2
- Velázquez, A., Durán, E., Ramirez, I., Mas, J. F., Bocco, G., Ramirez, G., & Palacio, J. L. (2003). Land use-cover change processes in highly biodiverse areas: The case of Oaxaca, Mexico. Global Environmental Change, 13(3), 175–184. https://doi.org/10.1016/S0959-3780(03)00035-9
- Wang, X., Xiao, X., & Xu, X. (2021). Rebound in China's coastal wetlands following conservation and restoration. Nature Sustainability, 12(4), 1076–1083. https://doi.org/10.1038/s41893-021-00793-5
10.1038/s41893-021-00793-5 Google Scholar
- Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 2501. https://doi.org/10.1038/s41467-021-22702-2
- Wu, X. L., Liu, H. J., Guo, X. T., Zhang, Z. M., Zhang, J. C., & Huang, X. F. (2023). Microplastic distribution and migration in soil, water and sediments in Caohai Lake under the different hydrological periods, Southwest China. Science of the Total Environment, 865(161), 292. https://doi.org/10.1016/j.scitotenv.2022.161292
10.1016/j.scitotenv.2022.161292 Google Scholar
- Yang, Y. S., Xie, J. S., Sheng, H., Chen, G. S., Li, X., & Yang, Z. J. (2009). The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China. Journal of Geographical Sciences, 19, 49–57. https://doi.org/10.1007/s11442-009-0049-5
- Zhang, J., Zhou, Y. K., Li, R. Q., Zhou, Z. J., Zhang, L. Q., Dong, S. Q., & Pan, X. L. (2010). Accuracy assessments and uncertainty analysis of spatially explicit modeling for land use/cover change and urbanization: A case in Beijing metropolitan area. Science China Earth Sciences, 53(2), 173–180. https://doi.org/10.1007/s11430-009-0199-4 (In Chinese).
- Zhang, L., Lu, W. X., Hou, G. L., Gao, H. Y., Liu, H. G., & Zheng, Y. N. (2019). Coupled analysis on land use, landscape pattern and nonpoint source pollution loads in Shitoukoumen Reservoir watershed, China. Sustainable Cities and Society, 51(101), 788. https://doi.org/10.1016/j.scs.2019.101788
10.1016/j.scs.2019.101788 Google Scholar
- Zhang, S. B., Fang, Y. Y., Kawasaki, A., Tavakkoli, E., Cai, Y. J., Wang, H. L., Ge, T. D., Zhou, J. S., Yu, B., & Li, Y. F. (2023). Biochar significantly reduced nutrient-induced positive priming in a subtropical forest soil. Biology and Fertility of Soils, 59, 589–607. https://doi.org/10.1007/s00374-023-01723-7
- Zhang, Z. M., Huang, X. F., & Zhou, Y. C. (2020). Factors influencing the evolution of human-driven rocky desertification in karst areas. Land Degradation & Development, 31, 2506–2513. https://doi.org/10.1002/ldr.3731
10.1002/ldr.3731 Google Scholar
- Zhang, Z. M., Zhang, J. C., & Huang, X. F. (2022). Distribution and migration characteristics of microplastics in farmland soils, surface water and sediments in Caohai Lake, southwestern plateau of China. Journal of Cleaner Production, 366(132), 912. https://doi.org/10.1016/j.jclepro.2022.132912
10.1016/j.jclepro.2022.132912 Google Scholar
- Zhao, R. F., Chen, Y. N., Li, W. H., Zhang, L. H., Wu, S. X., & Huang, Q. (2009). Land cover change and landscape pattern in the mainstream of the Tarim River. Acta Geographica Sinica, 64(1), 95–106. https://doi.org/10.1016/S1874-8651(10)60080-4 (In Chinese).
10.1016/S1874-8651(10)60080-4 Google Scholar
15 May 2024
Pages 2813-2823