Impact of precipitation and grazing on recovery of plant vegetation in temperate grasslands
Xi Lin
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorHongbin Zhao
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorCorresponding Author
Shengwei Zhang
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
Key Laboratory of Water Resources Protection and Utilization of Inner Mongolia Autonomous Region, Hohhot, China
Correspondence
Shengwei Zhang, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Email: [email protected]
Search for more papers by this authorRuishen Li
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorXiaoyuan Li
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorShuai Wang
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorXi Lin
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorHongbin Zhao
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorCorresponding Author
Shengwei Zhang
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
Key Laboratory of Water Resources Protection and Utilization of Inner Mongolia Autonomous Region, Hohhot, China
Correspondence
Shengwei Zhang, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Email: [email protected]
Search for more papers by this authorRuishen Li
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorXiaoyuan Li
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorShuai Wang
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
Search for more papers by this authorXi Lin and Hongbin Zhao contributed equally to this study.
Abstract
Grasslands support a rich diversity that plays a pivotal role in ecological balance, carbon sequestration, and climate regulation. Grassland ecosystems are facing a loss of biodiversity and a decline in soil function due to precipitation variations caused by climate change. However, variations in grassland species diversity are not clearly known, especially under the combined effects of precipitation and grazing. Based on a 5-year split-plot experiment with two grazing regimes (i.e., moderate grazing and grazing prohibition) along with three precipitation controls (ambient precipitation and ±50% precipitation) in Inner Mongolian grasslands, we researched the response of precipitation variability and grazing prohibition to vegetation diversity indices and investigated the response of vegetation community composition and biomass to these factors. Five years results showed that increasing precipitation resulted in a significant increase in the coverage of perennial forbs, annual and biennial plants, and Gramineae. Grazing prohibition and increased precipitation significantly increased biomass and species richness compared to all other treatment combinations. Interestingly, grazing exclusion significantly reduced the percentage of Amaryllidaceae, especially in the presence of altered precipitation. The vegetation community composition of a typical grassland was correlated with soil volumetric water content (VWC), bulk density (SBD) and pH, soil organic carbon (SOC), and total nitrogen (TN). VWC, SBD, and TN were found to be the most significant factors affecting vegetation diversity under grazing. Partial canonical ordination revealed that soil moisture, soil bulk density, and SOC had the most significant correlation with vegetation diversity under both grazing prohibition and increased precipitation treatment conditions. These results suggested that alterations in precipitation can change the species composition and ecosystem function of plant communities, leading to a close relationship between species diversity and soil properties. Our results underline the importance of species diversity for soil characteristics and environmental factors in a typical Eurasian steppe ecosystem.
CONFLICT OF INTEREST STATEMENT
There are no conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Bai, Y., Han, X., Wu, J., Chen, Z., & Li, L. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431(7005), 181–184. https://doi.org/10.1038/nature02850
- Bai, Y. L., Fu, C., Thapa, B., Rana, R. B., & Zhang, L. X. (2022). Effects of conservation measures on crop diversity and their implications for climate-resilient livelihoods: The case of Rupa Lake watershed in Nepal. Journal of Mountain Science, 19(4), 945–957. https://doi.org/10.1007/s11629-020-6426-3
- Barbosa, H. A., Lakshmi Kumar, T. V., & Silva, L. R. M. (2015). Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Natural Hazards, 77, 883–899. https://doi.org/10.1007/s11069-015-1635-8
- Bardgett, R. D., Bullock, J. M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N., Chomel, M., Durigan, G., Fry, E. L., Johnson, D., Lavallee, J. M., Le Provost, G., Luo, S., Png, K., Sankaran, M., Hou, X., Zhou, H., Ma, L., Ren, W., … Shi, H. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2(10), 720–735. https://doi.org/10.1038/s43017-021-00207-2
- Bekzod, A., Habibullo, S., Fan, L., Li, K., Ma, X., & Li, Y. (2021). Transformation of vegetative cover on the Ustyurt plateau of Central Asia as a consequence of the Aral Sea shrinkage. Journal of Arid Land, 13, 71–87. https://doi.org/10.1007/s40333-020-0077-7
- Berlinches de Gea, A., Hautier, Y., & Geisen, S. (2023). Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Global Change Biology, 29(2), 296–307. https://doi.org/10.1111/gcb.16471
- Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(1), 11–33. https://doi.org/10.1017/S0021859600021572
- Buschmann, H., Keller, M., Porret, N., Dietz, H., & Edwards, P. J. (2005). The effect of slug grazing on vegetation development and plant species diversity in an experimental grassland. Functional Ecology, 19(2), 291–298. https://doi.org/10.1111/j.1365-2435.2005.00960.x
- Cao, H. B., Xie, J. Y., Hong, J., Wang, X., Wei, H. U., & Hong, J. P. (2021). Organic matter fractions within macroaggregates in response to long-term fertilization in calcareous soil after reclamation. Journal of Integrative Agriculture, 20, 1636–1648. https://doi.org/10.1016/s2095-3119(20)63354-8
- Carroll, T., Cardou, F., Dornelas, M., Thomas, C. D., & Vellend, M. (2023). Biodiversity change under adaptive community dynamics. Global Change Biology., 29, 3525–3538. https://doi.org/10.1111/gcb.16680
- Chang, H. Q., Zhu, X. H., Jie, W. U., Guo, D. Y., Zhang, L. H., & Feng, Y. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121–1136. https://doi.org/10.1016/S2095-3119(20)63341-X
- Chang, Q., He, H., Ren, X., Zhang, L., Feng, L., Lv, Y., Zhang, M., Qu, W., Liu, W., Zhang, Y., & Wang, T. (2023). Soil moisture drives the spatiotemporal patterns of asymmetry in vegetation productivity responses across China. Science of the Total Environment, 855, 158819. https://doi.org/10.1016/j.scitotenv.2022.158819
- Chen, Z., Wang, W., & Fu, J. (2020). Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Scientific Reports, 10(1), 830. https://doi.org/10.1038/s41598-020-57910-1
- Cheng, J., Shi, X., Fan, P., Zhou, X., Sheng, J., & Zhang, Y. (2020). Relationship of species diversity between overstory trees and understory herbs along the environmental gradients in the Tianshan wild fruit forests, Northwest China. Journal of Arid Land, 12, 618–629. https://doi.org/10.1007/s40333-020-0055-0
- Ciais, P., Yao, Y., Gasser, T., Baccini, A., Wang, Y., Lauerwald, R., Peng, S., Bastos, A., Li, W., Raymond, P. A., Canadell, J. G., Peters, G. P., Andres, R. J., Chang, J., Yue, C., Dolman, A. J., Haverd, V., Hartmann, J., Laruelle, G., … Zhu, D. (2021). Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. National Science Review, 8(2), nwaa145. https://doi.org/10.1093/nsr/nwaa145
- Dubeux, J. C. B., Jr., Sollenberger, L. E., Mathews, B. W., Scholberg, J. M., & Santos, H. Q. (2007). Nutrient cycling in warm-climate grasslands. Crop Science, 47(3), 915–928. https://doi.org/10.2135/cropsci2006.09.0581
- Ebrahimi, M., Mohammadi, F., Fakhireh, A., & Bameri, A. (2019). Effects of Haloxylon spp. of different age classes on vegetation cover and soil properties on an arid desert steppe in Iran. Pedosphere, 29(5), 619–631. https://doi.org/10.1016/S1002-0160(17)60378-3
- Gao, X., Lv, S., Diao, Z., Wang, D., Li, D., & Zheng, Z. (2023). Responses of vegetation, soil, and microbes and carbon and nitrogen pools to semiarid grassland land-use patterns in Duolun, Inner Mongolia, China. Sustainability, 15(4), 3434. https://doi.org/10.3390/su15043434
- García-Favre, J., López, I. F., Cranston, L. M., Donaghy, D. J., Kemp, P. D., & Ordóñez, I. P. (2023). Functional contribution of two perennial grasses to enhance pasture production and drought resistance under a leaf regrowth stage defoliation criterion. Journal of Agronomy and Crop Science, 209(1), 144–160. https://doi.org/10.1111/jac.12602
- Gessler, A., Schaub, M., & McDowell, N. G. (2017). The role of nutrients in drought-induced tree mortality and recovery. New Phytologist, 214(2), 513–520. https://doi.org/10.1111/nph.14340
- Griffin-Nolan, R. J., Felton, A. J., Slette, I. J., Smith, M. D., & Knapp, A. K. (2023). Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia, 201(2), 311–322. https://doi.org/10.1007/s00442-023-05315-y
- Guo, J., Shi, J., Zhang, Y., Wang, Z., & Wang, W. (2022). Lake changes in Inner Mongolia over the past 30 years and the associated factors. Water, 14(19), 3137. https://doi.org/10.3390/w14193137
- Hawinkel, P., Thiery, W., Lhermitte, S., Swinnen, E., Verbist, B., Van Orshoven, J., & Muys, B. (2016). Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. Journal of Geophysical Research: Biogeosciences, 121(9), 2422–2444. https://doi.org/10.1002/2016JG003436
- Hongchao, J., Guang, Y., Xiaomin, L., Bingrui, J., Zhenzhu, X., & Yuhui, W. (2023). Climate extremes drive the phenology of a dominant species in meadow steppe under gradual warming. Science of the Total Environment, 869, 161687. https://doi.org/10.1016/j.scitotenv.2023.161687
- Hu, Y., Li, X., Guo, A., Yue, P., Guo, X., Lv, P., & Zuo, X. (2022). Species diversity is a strong predictor of ecosystem multifunctionality under altered precipitation in desert steppes. Ecological Indicators, 137, 108762. https://doi.org/10.1016/j.ecolind.2022.108762
- Huang, L., Ning, J., Zhu, P., Zheng, Y., & Zhai, J. (2021). The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China. Journal of Geographical Sciences, 31, 518–534. https://doi.org/10.1007/s11442-021-1856-6
- Jiang, L., Xiao, Y., Zheng, H., & Ouyang, Z. (2016). Spatio-temporal variation of wind erosion in Inner Mongolia of China between 2001 and 2010. Chinese Geographical Science, 26, 155–164. https://doi.org/10.1007/s11769-016-0797-y
- Jing, Z., Cheng, J., & Chen, A. (2013). Assessment of vegetative ecological characteristics and the succession process during three decades of grazing exclusion in a continental steppe grassland. Ecological Engineering, 57, 162–169. https://doi.org/10.1016/j.ecoleng.2013.04.035
- Lema, M. A., & Majule, A. E. (2009). Impacts of climate change, variability and adaptation strategies on agriculture in semi arid areas of Tanzania: The case of Manyoni District in Singida region, Tanzania. African Journal of Environmental Science and Technology, 3(8), 206–218. https://doi.org/10.5897/AJEST09.099
10.5897/AJEST09.099 Google Scholar
- Li, C. Y., Peng, F., Xue, X., Lai, C. M., Zhang, W. J., You, Q. G., Chen, X.-J., Zhang, X.-Q., & Wang, T. (2021). Degradation stage effects on vegetation and soil properties interactions in alpine steppe. Journal of Mountain Science, 18(3), 646–657. https://doi.org/10.1007/s11629-020-6192-2
- Li, J. X., Li, X. L., Gao, J., Shi, Y., & Ma, G. L. (2021). Influences of pika and simulated grazing disturbances on bare patches of alpine meadow in the Yellow River source zone. Journal of Mountain Science, 18(5), 1307–1320. https://doi.org/10.1007/s11629-020-6196-y
- Li, Q., Larsen, K. S., Kopittke, G., van Loon, E., & Tietema, A. (2023). Long-term temporal patterns in ecosystem carbon flux components and overall balance in a heathland ecosystem. Science of the Total Environment, 875, 162658. https://doi.org/10.1016/j.scitotenv.2023.162658
- Li, W. J., Ali, S. H., & Zhang, Q. (2007). Property rights and grassland degradation: A study of the Xilingol pasture, Inner Mongolia, China. Journal of Environmental Management, 85(2), 461–470.
- Li, W. J., Liu, S. S., Li, J. H., Zhang, R. L., Rang, K. Z. C., Zhou, H. K., Yao, B. Q., & Wang, J. F. (2019). Plant traits response to grazing exclusion by fencing assessed via multiple classification approach: A case from a subalpine meadow. Polish Journal of Ecology, 67(1), 33–52. https://doi.org/10.3161/15052249PJE2019.67.1.003
- Lin, X., Zhao, H., Zhang, S., Li, X., Gao, W., Ren, Z., & Luo, M. (2022). Effects of animal grazing on vegetation biomass and soil moisture on a typical steppe in Inner Mongolia, China. Ecohydrology, 15(1), 1–12. https://doi.org/10.1002/eco.2350
- Liu, H., Song, X., Wen, W., Jia, Q., & Zhu, D. (2022). Quantitative effects of climate change on vegetation dynamics in alpine grassland of Qinghai-Tibet plateau in a county. Atmosphere, 13(2), 324. https://doi.org/10.3390/atmos13020324
- Lü, X., Zhou, G., Wang, Y., & Song, X. (2016). Effects of changing precipitation and warming on functional traits of zonal stipa plants from inner Mongolian grassland. Journal of Meteorological Research, 30(3), 412–425. https://doi.org/10.1007/s13351-016-5091-5
- Lucas, W. J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S. R., Helariutta, Y., He, X. Q., Fukuda, H., Kang, J., Brady, S. M., Patrick, J. W., Sperry, J., Yoshida, A., López-Millán, A. F., Grusak, M. A., & Kachroo, P. (2013). The plant vascular system: Evolution, development and functions. Journal of Integrative Plant Biology, 55(4), 294–388. https://doi.org/10.1111/jipb.12041
- Maestre, F. T., Le Bagousse-Pinguet, Y., Delgado-Baquerizo, M., Eldridge, D. J., Saiz, H., Berdugo, M., Eldridge, D. J., Saiz, H., Berdugo, M., Gozalo, B., Ochoa, V., Guirado, E., García-Gómez, M., Valencia, E., Gaitán, J. J., Asensio, S., Mendoza, B. J., Plaza, C., Díaz-Martínez, P., … Gross, N. (2022). Grazing and ecosystem service delivery in global drylands. Science, 378(6622), 915–920. https://doi.org/10.1126/science.abq4062
- Müller, R., Peticzka, R., & Inselsbacher, E. (2023). Applicability of the microdialysis technique in dry soils: Impact of soil water content depends on perfusion flow rate. Soil Biology and Biochemistry, 177, 108903. https://doi.org/10.1016/j.soilbio.2022.108903
- Munson, A. (2023). The United Nations convention on biological diversity. In J. Kirkby, P. O'Keefe, & L. Timberlake (Eds.), The Earthscan reader in sustainable development (pp. 55–62). Routledge.
10.4324/9781003403432-8 Google Scholar
- Pang, Y. Q., & Zhang, Q. Q. (2021). Improvement of alkali fusion-molybdenum antimony anti-spectrophotometric method for the determination of soil phosphorus indicators (in Chinese). Acta Geologica Sichuan, 41, 167–168.
- Parhizkar, M., Shabanpour, M., Lucas-Borja, M. E., Zema, D. A., Li, S., Tanaka, N., & Cerda, A. (2021). Effects of length and application rate of rice straw mulch on surface runoff and soil loss under laboratory simulated rainfall. International Journal of Sediment Research, 36(4), 468–478. https://doi.org/10.1016/j.ijsrc.2020.12.002
- Pöyry, J., Luoto, M., Paukkunen, J., Pykälä, J., Raatikainen, K., & Kuussaari, M. (2006). Different responses of plants and herbivore insects to a gradient of vegetation height: An indicator of the vertebrate grazing intensity and successional age. Oikos, 115(3), 401–412. https://doi.org/10.1111/j.2006.0030-1299.15126.x
- Sadeghian, F., Jahandari, S., Haddad, A., Rasekh, H., & Li, J. (2022). Effects of variations of voltage and pH value on the shear strength of soil and durability of different electrodes and piles during electrokinetic phenomenon. Journal of Rock Mechanics and Geotechnical Engineering, 14(2), 625–636. https://doi.org/10.1016/j.jrmge.2021.07.017
- Smith, N. G., Schuster, M. J., & Dukes, J. S. (2016). Rainfall variability and nitrogen addition synergistically reduce plant diversity in a restored tallgrass prairie. Journal of Applied Ecology, 53(2), 579–586. https://doi.org/10.1111/1365-2664.12593
- Srivastava, N. K., Ram, L. C., & Masto, R. E. (2010). Role of selected riparian herbs in reducing soil erosion and nutrient loss under simulated rainfall. Environmental Earth Sciences, 61(2), 405–417. https://doi.org/10.1007/s12665-009-0353-5
- Stefanowicz, A. M., Kapusta, P., Stanek, M., Rożek, K., Rola, K., & Zubek, S. (2023). Herbaceous plant species and their combinations positively affect soil microorganisms and processes and modify soil physicochemical properties in a mesocosm experiment. Forest Ecology and Management, 532, 120826. https://doi.org/10.1016/j.foreco.2023.120826
- Su, J., Zhao, Y., & Bai, Y. (2023). Asymmetric responses of leaf litter decomposition to precipitation changes in global terrestrial ecosystem. Journal of Cleaner Production, 387, 135898. https://doi.org/10.1016/j.jclepro.2023.135898
- Sun, X., Wang, G., Ma, Q., Liao, J., Wang, D., Guan, Q., & Jones, D. L. (2021). Organic mulching promotes soil organic carbon accumulation to deep soil layer in an urban plantation forest. Forest Ecosystems, 8(1), 1–11. https://doi.org/10.1186/s40663-020-00278-5
- Thammanu, S., Marod, D., Han, H., Bhusal, N., Asanok, L., Ketdee, P., Gaewsingha, N., Lee, S., & Chung, J. (2021). The influence of environmental factors on species composition and distribution in a community forest in northern Thailand. Journal of Forestry Research, 32, 649–662. https://doi.org/10.1007/s11676-020-01239-y
- Tomar, U., & Baishya, R. (2020). Moisture regime influence on soil carbon stock and carbon sequestration rates in semi-arid forests of the National Capital Region, India. Journal of Forestry Research, 31, 2323–2332. https://doi.org/10.1007/s11676-019-01032-6
- Valdez, J. W., Callaghan, C. T., Junker, J., Purvis, A., Hill, S. L., & Pereira, H. M. (2023). The undetectability of global biodiversity trends using local species richness. Ecography, 2023(3), e06604. https://doi.org/10.1111/ecog.06604
- Wang, S., Zhang, S., Lin, X., Li, X., Li, R., Zhao, X., & Liu, M. (2022). Response of soil water and carbon storage to short-term grazing prohibition in arid and semi-arid grasslands of China. Journal of Arid Environments, 202, 104754. https://doi.org/10.1016/j.jaridenv.2022.104754
- Wang, Y., Zhao, Q., Wang, Z., Zhao, M., & Han, G. (2023). Overgrazing leads to decoupling of precipitation patterns and ecosystem carbon exchange in the desert steppe through changing community composition. Plant and Soil, 486, 1–14. https://doi.org/10.1007/s11104-023-05894-y
- Wang, Z., Deng, H., Li, F., Sun, Y., & Hong, S. (2023). Optimized soil bacterial structure following grazing exclusion promotes soil nutrient cycling and plant growth. Journal of Arid Environments, 213, 104977. https://doi.org/10.1016/j.jaridenv.2023.104977
- Wang, Z., & Zheng, F. (2021). Impact of vegetation succession on leaf-litter-soil C: N: P stoichiometry and their intrinsic relationship in the Ziwuling area of China's loess plateau. Journal of Forestry Research, 32(2), 697–711. https://doi.org/10.1007/s11676-020-01149-z
- Watts, S. H., Griffith, A., & Mackinlay, L. (2019). Grazing exclusion and vegetation change in an upland grassland with patches of tall herbs. Applied Vegetation Science, 22(3), 383–393. https://doi.org/10.1111/avsc.12438
- Weber, O. B., da Silva, M. C. B., da Silva, C. F., Correia, D., dos Santos Garruti, D., & Pagano, M. C. (2021). Diversity of mycorrhizal fungi and soil indicative species in coastal plantations of Northeast Brazil. Journal of Forestry Research, 32, 1203–1211. https://doi.org/10.1007/s11676-020-01190-y
- Wen, X. R., Cheng, Y. P., Zhang, J. K., & Dong, H. (2021). Ecological function zoning and protection of groundwater in Asia. Journal of Groundwater Science and Engineering, 9(4), 359–368. https://doi.org/10.19637/j.cnki.2305-7068.2021.04.009
- Wu, Y., Du, Y., Liu, X., Wan, X., Yin, B., Hao, Y., & Wang, Y. (2023). Grassland biodiversity response to livestock grazing, productivity, and climate varies across biome components and diversity measurements. Science of the Total Environment, 162994, 162994. https://doi.org/10.1016/j.scitotenv.2023.162994
10.1016/j.scitotenv.2023.162994 Google Scholar
- Xia, L., Bi, R. T., Song, X. Y., Hu, W., Lyu, C. J., Xi, X., & Li, H. Y. (2022). Soil moisture response to land use and topography across a semi-arid watershed: Implications for vegetation restoration on the Chinese loess plateau. Journal of Mountain Science, 19(1), 103–120. https://doi.org/10.1007/s11629-021-6830-3
- Yuan, Q., Yuan, Q., & Ren, P. (2021). Coupled effect of climate change and human activities on the restoration/degradation of the Qinghai-Tibet plateau grassland. Journal of Geographical Sciences, 31, 1299–1327. https://doi.org/10.1007/s11442-021-1899-8
- Zhao, J., Luo, T., Li, R., Li, X., & Tian, L. (2016). Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central Tibetan plateau. Agricultural and Forest Meteorology, 218, 114–121. https://doi.org/10.1016/j.agrformet.2015.12.005
- Zheng, C., Wen, Z., Liu, Y., Guo, Q., Jiang, Y., Ren, H., Fan, Y., & Yang, Y. (2021). Integrating habitat suitability and the near-nature restoration priorities into revegetation plans based on potential vegetation distribution. Forests, 12(2), 218. https://doi.org/10.3390/f12020218
- Zheng, K., Wei, J. Z., Pei, J. Y., Cheng, H., Zhang, X. L., Huang, F. Q., Li, F.-M., & Ye, J. S. (2019). Impacts of climate change and human activities on grassland vegetation variation in the Chinese loess plateau. Science of the Total Environment, 660, 236–244. https://doi.org/10.1016/j.scitotenv.2019.01.022
- Zhu, N., Yan, Y., Bai, K., Zhang, J., Wang, C., Wang, X., Xu, D., Liu, J., Xin, X., & Chen, J. (2023). Conversion of croplands to shrublands does not improve soil organic carbon and nitrogen but reduces soil phosphorus in a temperate grassland of northern China. Geoderma, 432, 116407. https://doi.org/10.1016/j.geoderma.2023.116407
- Zong, H., Sun, J. R., Zhou, L., Bao, F., & Zheng, X. Z. (2022). Effect of altitude and climatic parameters on shrub-meadow community composition and diversity in the dry valley region of the eastern Hengduan Mountains, China. Journal of Mountain Science, 19(4), 1139–1155. https://doi.org/10.1007/s11629-021-6990-1
- Zong, N., Hou, G., Shi, P., & Song, M. (2023). Winter warming alleviates the severely negative effects of nitrogen addition on ecosystem stability in a Tibetan alpine grassland. Science of the Total Environment, 855, 158923. https://doi.org/10.1016/j.scitotenv.2022.158923