Shrub encroachment occurs near previously invaded areas in Patagonia (southern South America)
Corresponding Author
Paula Estelí Romero-Ovalle
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Correspondence
Paula Estelí Romero-Ovalle, Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Boulevard Brown 2915, (9120) Puerto Madryn, Chubut, Argentina.
Email: [email protected]
Search for more papers by this authorMaría Victoria Campanella
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorMiguel Pascual
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorMartín García-Asorey
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Universidad Tecnológica Nacional, Facultad Regional Chubut, UTN-FRCH, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorCristian Pacheco
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorCristian Barrionuevo
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorAlejandro Jorge Bisigato
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco UNPSJB, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorCorresponding Author
Paula Estelí Romero-Ovalle
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Correspondence
Paula Estelí Romero-Ovalle, Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Boulevard Brown 2915, (9120) Puerto Madryn, Chubut, Argentina.
Email: [email protected]
Search for more papers by this authorMaría Victoria Campanella
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorMiguel Pascual
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorMartín García-Asorey
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Universidad Tecnológica Nacional, Facultad Regional Chubut, UTN-FRCH, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorCristian Pacheco
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorCristian Barrionuevo
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorAlejandro Jorge Bisigato
Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Chubut, Argentina
Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco UNPSJB, Puerto Madryn, Chubut, Argentina
Search for more papers by this authorAbstract
During the last century shrub encroachment has occurred in many arid and semiarid areas of the world. Patagonia is a large xeric territory located in the southern tip of South America, which has been grazed by sheep for more than a century. In many areas overgrazing led to vegetation change (shrub encroachment), which in turn reduced sheep carrying capacity and caused ranch abandonment. However, these changes in physiognomy did not occur everywhere, and even some authors did not find evidence that shrub encroachment is currently occurring. Our objectives were to determine if encroachment really happened in NE Patagonia and, in the case of confirming shrub encroachment, to evaluate if the increase in shrub density was spatially homogeneous. We used object-based image analysis to evaluate shrub density and cover in aerial photographs taken in 1970 and 2018. In both dates, shrub density showed a clear contrast between two kinds of areas showing higher and lower density than was expected by chance. Shrub density and cover more than doubled between 1970 and 2018. This increase was concentrated in those areas with moderate or high densities of shrubs in 1970. Our results confirm the occurrence of shrub encroachment in NE Patagonia and demonstrate that it is currently concentrated near previously invaded areas. These findings have implications when defining protocols for monitoring shrub encroachment since monitors should focus on both areas that already have shrubs and areas that lack them.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ldr4974-sup-0001-Supinfo01.docxWord 2007 document , 1.4 MB | Data S1. Supporting information. |
ldr4974-sup-0002-Supinfo02.docxWord 2007 document , 69.4 KB | Data S2. Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
- Ansley, R. J., Wu, X. B., & Kramp, B. A. (2001). Observation: Long-term increases in mesquite canopy cover in a North Texas savanna. Journal of Range Management Archives, 54(2), 171–176. https://doi.org/10.2307/4003179
10.2307/4003179 Google Scholar
- Archer, S. R., Andersen, E. M., Predick, K. I., Schwinning, S., Steidl, R. J., & Woods, S. R. (2017). Woody plant encroachment: Causes and consequences. In D. D. Briske (Ed.), Rangeland systems: Processes, management and challenges (pp. 25–84). Springer. https://doi.org/10.1007/978-3-319-46709-2
10.1007/978-3-319-46709-2_2 Google Scholar
- Asner, G. P., & Heidebrecht, K. B. (2005). Desertification alters regional ecosystem–climate interactions. Global Change Biology, 11(1), 182–194. https://doi.org/10.1111/j.1529-8817.2003.00880.x
- Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: Methodology and applications with R. CRC Press. https://doi.org/10.1201/b19708
10.1201/b19708 Google Scholar
- Barger, N. N., Archer, S. R., Campbell, J. L., Huang, C. Y., Morton, J. A., & Knapp, A. K. (2011). Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research: Biogeosciences, 116, G00K07. https://doi.org/10.1029/2010JG001506
- Beeskow, A. M., Ellisalde, N. O., & Rostagno, C. M. (1995). Ecosystem changes associated with grazing intensity on the Punta Ninfas rangelands of Patagonia, Argentina. Journal of Range Management Archives, 48(6), 517–522. https://doi.org/10.2307/4003063
10.2307/4003063 Google Scholar
- Bertiller, M. B., & Bisigato, A. (1998). Vegetation dynamics under grazing disturbance. The state-and-transition model for the Patagonian steppes. Ecología Austral, 8(2), 191–199.
- Bestelmeyer, B. T., Goolsby, D. P., & Archer, S. R. (2011). Spatial perspectives in state-and-transition models: A missing link to land management? Journal of Applied Ecology, 48(3), 746–757. https://doi.org/10.1111/j.1365-2664.2011.01982.x
- Biancari, L., Aguiar, M. R., & Cipriotti, P. A. (2020). Grazing impact on structure and dynamics of bare soil areas in a Patagonian grass-shrub steppe. Journal of Arid Environments, 179, 104197. https://doi.org/10.1016/j.jaridenv.2020.104197
- Bivand, R., & Lewin-Koh, N. (2013). maptools: Tools for reading and handling spatial objects. R package version 0.8, 23.
- Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004
- Britz, M. L., & Ward, D. (2007). Dynamics of woody vegetation in a semi-arid savanna, with a focus on bush encroachment. African Journal of Range and Forage Science, 24(3), 131–140. https://doi.org/10.2989/AJRFS.2007.24.3.3.296
10.2989/AJRFS.2007.24.3.3.296 Google Scholar
- Brown, J. R., & Archer, S. (1999). Shrub invasion of grassland: Recruitment is continuous and not regulated by herbaceous biomass or density. Ecology, 80(7), 2385–2396. https://doi.org/10.1890/0012-9658(1999)080[2385:SIOGRI]2.0.CO;2
- Brown, J. R., & Carter, J. (1998). Spatial and temporal patterns of exotic shrub invasion in an Australian tropical grassland. Landscape Ecology, 13, 93–102. https://doi.org/10.1023/A:1007939203931
- Browning, D. M., Archer, S. R., Asner, G. P., McClaran, M. P., & Wessman, C. A. (2008). Woody plants in grasslands: Post-encroachment stand dynamics. Ecological Applications, 18(4), 928–944.
- Browning, D. M., & Archer, S. R. (2011). Protection from livestock fails to deter shrub proliferation in a desert landscape with a history of heavy grazing. Ecological Applications, 21(5), 1629–1642. https://doi.org/10.1890/10-0542.1
- Browning, D. M., Duniway, M. C., Laliberte, A. S., & Rango, A. (2012). Hierarchical analysis of vegetation dynamics over 71 years: Soil–rainfall interactions in a Chihuahuan Desert ecosystem. Ecological Applications, 22, 909–926. https://doi.org/10.1890/11-1193.1
- Burkinshaw, A. M., & Bork, E. W. (2009). Shrub encroachment impacts the potential for multiple use conflicts on public land. Environmental Management, 44, 493–504. https://doi.org/10.1007/s00267-009-9328-2
- Campanella, M. V., & Bisigato, A. J. (2019). Conspecific leaf litter and root competition inhibits shrub emergence in the Patagonian steppe. Plant Ecology, 220(10), 985–993. https://doi.org/10.1007/s11258-019-00968-3
- Campanella, M. V., Bisigato, A. J., & Rostagno, C. M. (2016). Plant production along a grazing gradient in a semiarid Patagonian rangeland, Argentina. Plant Ecology, 217(12), 1553–1562. https://doi.org/10.1007/s11258-016-0668-8
- Campanella, M. V., Rostagno, C. M., Videla, L. S., & Bisigato, A. J. (2016). Interacting effects of soil degradation and precipitation on plant productivity in NE Patagonia, Argentina. Arid Land Research and Management, 30(1), 79–88. https://doi.org/10.1080/15324982.2015.1053629
- Cao, X., Liu, Y., Cui, X., Chen, J., & Chen, X. (2019). Mechanisms, monitoring and modeling of shrub encroachment into grassland: A review. International Journal of Digital Earth, 12(6), 625–641. https://doi.org/10.1080/17538947.2018.1478004
- Cao, X., Liu, Y., Liu, Q., Cui, X., Chen, X., & Chen, J. (2018). Estimating the age and population structure of encroaching shrubs in arid/semiarid grasslands using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 216, 572–585. https://doi.org/10.1016/j.rse.2018.07.025
- Carrillo, G. (2022). vec2dtransf: 2D Cartesian Coordinate Transformation. R package version 1.1.2. https://CRAN.R-project.org/package=vec2dtransf
- Casalini, A. I., & Bisigato, A. J. (2018). Stress-gradient hypothesis and plant distribution along ecotonal gradients. Austral Ecology, 43(7), 807–816. https://doi.org/10.1111/aec.12623
- Cipriotti, P. A., & Aguiar, M. R. (2012). Direct and indirect effects of grazing constrain shrub encroachment in semi-arid Patagonian steppes. Applied Vegetation Science, 15(1), 35–47. https://doi.org/10.1111/j.1654-109X.2011.01138.x
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104
- Debussche, M., & Lepart, J. (1992). Establishment of woody plants in Mediterranean old fields: Opportunity in space and time. Landscape Ecology, 6, 133–145. https://doi.org/10.1007/BF00130026
- Diggle, P. J. (1985). A kernel method for smoothing point process data. Applied Statistics, 34, 138–147. https://doi.org/10.2307/2347366
- Ding, J., & Eldridge, D. (2023). The success of woody plant removal depends on encroachment stage and plant traits. Nature Plants, 9(1), 58–67. https://doi.org/10.1038/s41477-022-01307-7
- D'Odorico, P., Okin, G. S., & Bestelmeyer, B. T. (2012). A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 5(5), 520–530. https://doi.org/10.1002/eco.259
- Eldridge, D. J., Bowker, M. A., Maestre, F. T., Roger, E., Reynolds, J. F., & Whitford, W. G. (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14(7), 709–722. https://doi.org/10.1111/j.1461-0248.2011.01630.x
- Estrany, J., Ruiz, M., Calsamiglia, A., Carriquí, M., García-Comendador, J., Nadal, M., Fortesa, J., López-Tarazón, J. A., Medrano, H., & Gago, J. (2019). Sediment connectivity linked to vegetation using UAVs: High-resolution imagery for ecosystem management. Science of the Total Environment, 671, 1192–1205. https://doi.org/10.1016/j.scitotenv.2019.03.399
- Fensham, R. J., Fairfax, R. J., & Archer, S. R. (2005). Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. Journal of Ecology, 93(3), 596–606. https://doi.org/10.1111/j.1365-2745.2005.00998.x
- Fuhlendorf, S. D., & Engle, D. M. (2001). Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns: We propose a paradigm that enhances heterogeneity instead of homogeneity to promote biological diversity and wildlife habitat on rangelands grazed by livestock. BioScience, 51(8), 625–632. https://doi.org/10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2
- Gaitán, J. J., Bran, D. E., Oliva, G. E., Aguiar, M. R., Buono, G. G., Ferrante, D., Nakamatsu, V., Ciari, G., Salomone, J. M., Massara, V., & Maestre, F. T. (2018). Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Degradation & Development, 29(2), 210–218. https://doi.org/10.1002/ldr.2694
- García Criado, M., Myers-Smith, I. H., Bjorkman, A. D., Lehmann, C. E., & Stevens, N. (2020). Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography, 29(5), 925–943. https://doi.org/10.1111/geb.13072
- García-Fayos, P., García-Ventoso, B., & Cerdà, A. (2000). Limitations to plant establishment on eroded slopes in southeastern Spain. Journal of Vegetation Science, 11(1), 77–86. https://doi.org/10.2307/3236778
- Goslee, S. C., Havstad, K. M., Peters, D. P. C., Rango, A., & Schlesinger, W. H. (2003). High-resolution images reveal rate and pattern of shrub encroachment over six decades in New Mexico, USA. Journal of Arid Environments, 54(4), 755–767. https://doi.org/10.1006/jare.2002.1103
- Guirado, E., Tabik, S., Alcaraz-Segura, D., Cabello, J., & Herrera, F. (2017). Deep-learning versus OBIA for scattered shrub detection with Google earth imagery: Ziziphus lotus as case study. Remote Sensing, 9(12), 1220. https://doi.org/10.3390/rs9121220
- Hofmann, P., Blaschke, T., & Strobl, J. (2011). Quantifying the robustness of fuzzy rule sets in object-based image analysis. International Journal of Remote Sensing, 32(22), 7359–7381. https://doi.org/10.1080/01431161.2010.523727
- Huenneke, L. F., Anderson, J. P., Remmenga, M., & Schlesinger, W. H. (2002). Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Global Change Biology, 8(3), 247–264. https://doi.org/10.1046/j.1365-2486.2002.00473.x
- Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T., & Wall, D. H. (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418, 623–626. https://doi.org/10.1038/nature00910
- Joubert, D. F., Smit, G. N., & Hoffman, M. T. (2013). The influence of rainfall, competition and predation on seed production, germination and establishment of an encroaching acacia in an arid Namibian savanna. Journal of Arid Environments, 91, 7–13. https://doi.org/10.1016/j.jaridenv.2012.11.001
- Khazieva, E., Verburg, P. H., & Pazúr, R. (2022). Grassland degradation by shrub encroachment: Mapping patterns and drivers of encroachment in Kyrgyzstan. Journal of Arid Environments, 207, 104849. https://doi.org/10.1016/j.jaridenv.2022.104849
- Laliberte, A. S., Fredrickson, E. L., & Rango, A. (2007). Combining decision trees with hierarchical object-oriented image analysis for mapping arid rangelands. Photogrammetric Engineering & Remote Sensing, 73(2), 197–207. https://doi.org/10.14358/PERS.73.2.197
- Laliberte, A. S., Rango, A., Havstad, K. M., Paris, J. F., Beck, R. F., McNeely, R., & Gonzalez, A. L. (2004). Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sensing of Environment, 93(1–2), 198–210. https://doi.org/10.1016/j.rse.2004.07.011
- Lohmann, D., Tietjen, B., Blaum, N., Joubert, D. F., & Jeltsch, F. (2014). Prescribed fire as a tool for managing shrub encroachment in semi-arid savanna rangelands. Journal of Arid Environments, 107, 49–56. https://doi.org/10.1016/j.jaridenv.2014.04.003
- McGlynn, I. O., & Okin, G. S. (2006). Characterization of shrub distribution using high spatial resolution remote sensing: Ecosystem implications for a former Chihuahuan Desert grassland. Remote Sensing of Environment, 101(4), 554–566. https://doi.org/10.1016/j.rse.2006.01.016
- Naito, A. T., & Cairns, D. M. (2011). Patterns and processes of global shrub expansion. Progress in Physical Geography, 35(4), 423–442. https://doi.org/10.1177/0309133311403538
- Palacio. (2019). Desertificación en el NE de la Patagonia: ¿son algunas comunidades vegetales más susceptibles que otras? Tesis doctoral (p. 183). Universidad Nacional del Comahue.
- Palacio, R. G., Bisigato, A. J., & Bouza, P. J. (2014). Soil erosion in three grazed plant communities in northeastern Patagonia. Land Degradation & Development, 25(6), 594–603. https://doi.org/10.1002/ldr.2289
- Peng, H. Y., Li, X. Y., Li, G. Y., Zhang, Z. H., Zhang, S. Y., Li, L., Zhao, G. H., Jiang, Z. Y., & Ma, Y. J. (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid inner Mongolian grasslands of China. Catena, 109, 39–48. https://doi.org/10.1016/j.catena.2013.05.008
- Polley, H. W. (1997). Implications of rising atmospheric carbon dioxide concentration for rangelands. Journal of Range Management Archives, 50(6), 562–577. https://doi.org/10.2307/4003450
- Pringle, H. J., Watson, I. W., & Tinley, K. L. (2006). Landscape improvement, or ongoing degradation–reconciling apparent contradictions from the arid rangelands of Western Australia. Landscape Ecology, 21, 1267–1279. https://doi.org/10.1007/s10980-006-0015-x
- Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P., Downing, T. E., Dowlatabadi, H., Fernández, R. J., Herrick, J. E., & Huber-Sannwald, E. (2007). Global desertification: Building a science for dryland development. Science, 316(5826), 847–851. https://doi.org/10.1126/science.1131634
- Robinson, T. P., Van Klinken, R. D., & Metternicht, G. (2008). Spatial and temporal rates and patterns of mesquite (Prosopis species) invasion in Western Australia. Journal of Arid Environments, 72(3), 175–188. https://doi.org/10.1016/j.jaridenv.2007.05.011
- Romero Ovalle, P. E., Bisigato, A. J., & Campanella, M. V. (2021). Soil erosion facilitates shrub encroachment in Patagonian herbaceous steppes. Land Degradation & Development, 32(11), 3377–3385. https://doi.org/10.1002/ldr.4016
- Roques, K. G., O'connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268–280. https://doi.org/10.1046/j.1365-2664.2001.00567.x
- Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A., & Whitford, W. G. (1990). Biological feedbacks in global desertification. Science, 247(4946), 1043–1048. https://doi.org/10.1126/science.247.4946.1043
- Soubry, I., Robinov, L., Chu, T., & Guo, X. (2022). Mapping shrub cover in grasslands with an object-based approach and investigating the connection to topo-edaphic factors. Geocarto International, 37(27), 16926–16950. https://doi.org/10.1080/10106049.2022.2120549
- Stevens, N., Lehmann, C. E., Murphy, B. P., & Durigan, G. (2017). Savanna woody encroachment is widespread across three continents. Global Change Biology, 23(1), 235–244. https://doi.org/10.1111/gcb.13409
- Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Groengroeft, A., Schiffers, K., & Oldeland, J. (2010). Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 3(2), 226–237. https://doi.org/10.1002/eco.70
- Turnbull, L., Wainwright, J., Brazier, R. E., & Bol, R. (2010). Biotic and abiotic changes in ecosystem structure over a shrub-encroachment gradient in the Southwestern USA. Ecosystems, 13, 1239–1255. https://doi.org/10.1007/s10021-010-9384-8
- Van Auken, O. W. (2009). Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90(10), 2931–2942. https://doi.org/10.1016/j.jenvman.2009.04.023
- Walker, B. H. (1993). Rangeland ecology: Understanding and managing change. Ambio, 22, 80–87.
- Wang, Y., Liang, E., Lu, X., Camarero, J. J., Babst, F., Shen, M., & Peñuelas, J. (2021). Warming-induced shrubline advance stalled by moisture limitation on the Tibetan plateau. Ecography, 44(11), 1631–1641. https://doi.org/10.1111/ecog.05845
- Watson, I. W., Westoby, M., & McR Holm, A. (1997). Continuous and episodic components of demographic change in arid zone shrubs: Models of two Eremophila species from Western Australia compared with published data on other species. Journal of Ecology, 85, 833–846. https://doi.org/10.2307/2960605
- Wiegand, K., Jeltsch, F., & Ward, D. (2004). Minimum recruitment frequency in plants with episodic recruitment. Oecologia, 141, 363–372. https://doi.org/10.1007/s00442-003-1439-5
- Wu, X. B., & Archer, S. R. (2005). Scale-dependent influence of topography-based hydrologic features on patterns of woody plant encroachment in savanna landscapes. Landscape Ecology, 20, 733–742. https://doi.org/10.1007/s10980-005-0996-x
- Yan, G., Mas, J. F., Maathuis, B. H. P., Xiangmin, Z., & Van Dijk, P. M. (2006). Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing, 27(18), 4039–4055. https://doi.org/10.1080/01431160600702632
- Zhang, P. J., Qing, H., Zhang, L., Xu, Y. D., Mu, L., Ye, R. H., Qiu, X., Chang, H., Shen, H., & Yang, J. (2017). Population structure and spatial pattern of Caragana tibetica communities in Nei Mongol shrub-encroached grassland. Chinese Journal of Plant Ecology, 41, 165–174. https://doi.org/10.17521/cjpe.2015.0448
10.17521/cjpe.2015.0448 Google Scholar
- Zhou, L., Shen, H., Chen, L., Li, H. E., Zhang, P., Zhao, X., Liu, T., Liu, S., Xing, A., Hu, H., & Fang, J. (2019). Ecological consequences of shrub encroachment in the grasslands of northern China. Landscape Ecology, 34, 119–130. https://doi.org/10.1007/s10980-018-074-2