Magnetic Resonance Angiography of the Thoracic Vasculature: Technique and Applications
Daniel R. Ludwig MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Search for more papers by this authorAnup S. Shetty MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Search for more papers by this authorJordi Broncano MD
Cardiothoracic Imaging Section, Health Time, Hospital de la Cruz Roja and San Juan de Dios, Cordoba, Spain
Search for more papers by this authorSanjeev Bhalla MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Search for more papers by this authorCorresponding Author
Constantine A. Raptis MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Address reprint requests to: C.A.R., 510 S. Kingshighway Boulevard, Campus Box 8131, St. Louis, Missouri 63110. E-mail: [email protected]Search for more papers by this authorDaniel R. Ludwig MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Search for more papers by this authorAnup S. Shetty MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Search for more papers by this authorJordi Broncano MD
Cardiothoracic Imaging Section, Health Time, Hospital de la Cruz Roja and San Juan de Dios, Cordoba, Spain
Search for more papers by this authorSanjeev Bhalla MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Search for more papers by this authorCorresponding Author
Constantine A. Raptis MD
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
Address reprint requests to: C.A.R., 510 S. Kingshighway Boulevard, Campus Box 8131, St. Louis, Missouri 63110. E-mail: [email protected]Search for more papers by this authorAbstract
Magnetic resonance angiography (MRA) is a powerful clinical tool for evaluation of the thoracic vasculature. MRA can be performed on nearly any magnetic resonance imaging (MRI) scanner, and provides images of high diagnostic quality without the use of ionizing radiation. While computed tomographic angiography (CTA) is preferred in the evaluation of hemodynamically unstable patients, MRA represents an important tool for evaluation of the thoracic vasculature in stable patients. Contrast-enhanced MRA is generally performed unless there is a specific contraindication, as it shortens the duration of the exam and provides images of higher diagnostic quality than noncontrast MRA. However, intravenous contrast is often not required to obtain a diagnostic evaluation for most clinical indications. Indeed, a variety of noncontrast MRA techniques are used for thoracic imaging, often in conjunction with contrast-enhanced MRA, each of which has a differing degree of reliance on flowing blood to produce the desired vascular signal. In this article we review contrast-enhanced MRA, with a focus on contrast agents, methods of bolus timing, and considerations in imaging acquisition. Next, we cover the mechanism of contrast, strengths, and weaknesses of various noncontrast MRA techniques. Finally, we present an approach to protocol development and review representative protocols used at our institution for a variety of thoracic applications. Further attention will be devoted to additional techniques employed to address specific clinical questions, such as delayed contrast-enhanced imaging, provocative maneuvers, electrocardiogram and respiratory gating, and phase-contrast imaging. The purpose of this article is to review basic techniques and methodology in thoracic MRA, discuss an approach to protocol development, and illustrate commonly encountered pathology on thoracic MRA examinations.
Level of Evidence
5
Technical Efficacy Stage
3
Conflicts of Interest
The authors have no relevant relationships to disclose.
References
- 1 American College of Radiology, Committee on Drugs and Contrast Media. ACR manual on contrast media v10.3 [Internet]. 2018 Accessed on May 8, 2019. Available from: https://www.acr.org/Clinical-Resources/Contrast-Manual
- 2Brenner DJ, Elliston CD, Hall EJ, Berdon WE. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001; 176(2): 289-296.
- 3Prince MR. Gadolinium-enhanced MR aortography. Radiology 1994; 191(1): 155-164.
- 4Prince MR, Narasimham DL, Jacoby WT, et al. Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol 1996; 166(6): 1387-1397.
- 5Leung DA, Debatin JF. Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature. Eur Radiol 1997; 7(7): 981-989.
- 6Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: A comprehensive risk assessment. J Magn Reson Imaging 2017; 46(2): 338-353.
- 7Daram SR, Cortese CM, Bastani B. Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: Report of a new case with literature review. Am J Kidney Dis 2005; 46(4): 754-759.
- 8Deray G, Rouviere O, Bacigalupo L, et al. Safety of meglumine gadoterate (Gd-DOTA)-enhanced MRI compared to unenhanced MRI in patients with chronic kidney disease (RESCUE study). Eur Radiol 2013; 23(5): 1250-1259.
- 9Lauenstein T, Ramirez-Garrido F, Kim YH, et al. Nephrogenic systemic fibrosis risk after liver magnetic resonance imaging with gadoxetate disodium in patients with moderate to severe renal impairment: Results of a prospective, open-label, multicenter study. Invest Radiol 2015; 50(6): 416-422.
- 10Michaely HJ, Aschauer M, Deutschmann H, et al. Gadobutrol in renally impaired patients: Results of the GRIP study. Invest Radiol 2017; 52(1): 55-60.
- 11Xiao Y-D, Paudel R, Liu J, Ma C, Zhang Z-S, Zhou S-K. MRI contrast agents: Classification and application (Review). Int J Mol Med 2016; 38(5): 1319-1326.
- 12Rapp JH, Wolff SD, Quinn SF, et al. Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: Safety and efficacy of gadofosveset-enhanced MR angiography-multicenter comparative phase III study. Radiology 2005; 236(1): 71-78.
- 13Raptis C, Fowler KJ, Narra VR. Magnetic resonance angiography: Technique. Problem solving in cardiovascular imaging ( S Abbara, SP Kalva, Eds.). London: Elsevier Health Sciences; 2012.
- 14Guglielmo FF, Mitchell DG, Gupta S. Gadolinium contrast agent selection and optimal use for body MRI. Radiol Clin North Am 2014; 52(4): 637-656.
- 15Lee VS, Cardiovascular MRI. Physical principles to practical protocols. Philadelphia: Lippincott Williams & Wilkins; 2006.
- 16Riederer SJ, Fain SB, Kruger DG, Busse RF. 3D contrast-enhanced MR angiography using fluoroscopic triggering and an elliptical centric view order. Int J Cardiovasc Imaging 1999; 15(2): 117-129.
- 17Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: Application to the renal arteries. Radiology 1997; 205(1): 137-146.
- 18Maki JH, Prince MR, Londy FJ, Chenevert TL. The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging 1996; 6(4): 642-651.
- 19Earls JP, Shaves SC. MR angiography of the thoracic, abdominal, and extremity venous system. Magn Reson Imaging Clin N Am 1998; 6(2): 417-435.
- 20Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC. Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: Usefulness of a timing examination and MR power injector. Radiology 1996; 201(3): 705-710.
- 21Hargreaves B. Rapid gradient-echo imaging. J Magn Reson Imaging 2012; 36(6): 1300-1313.
- 22Groves EM, Bireley W, Dill K, Carroll TJ, Carr JC. Quantitative analysis of ECG-gated high-resolution contrast-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol 2007; 188(2): 522-528.
- 23Arpasi PJ, Bis KG, Shetty AN, White RD, Simonetti OP. MR angiography of the thoracic aorta with an electrocardiographically triggered breath-hold contrast-enhanced sequence. Radiographics 2000; 20(1): 107-120.
- 24Raptis CA, Ludwig DR, Hammer MM, et al. Building blocks for thoracic MRI: Challenges, sequences, and protocol design. J Magn Reson Imaging 2019; 50(3): 682-701.
- 25Rofsky NM, Lee VS, Laub G, et al. Abdominal MRI with a volumetric interpolated breath-hold examination. Radiology 1999; 212(3): 876-884.
- 26Chandarana H, Block TK, Rosenkrantz AB, et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: A viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 2011; 46(10): 648-653.
- 27Bustin A, Ginami G, Cruz G, et al. Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med 2019; 81(1): 102-115.
- 28Shen D, Edelman RR, Robinson JD, et al. Single-shot coronary quiescent-interval slice-selective magnetic resonance angiography using compressed sensing: A feasibility study in patients with congenital heart disease. J Comput Assist Tomogr 2018; 42(5): 739-746.
- 29Nakamura M, Kido T, Kido T, et al. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: A comparison with conventional imaging. Eur J Radiol 2018; 104: 43-48.
- 30Riederer SJ, Haider CR, Borisch EA, Weavers PT, Young PM. Recent advances in 3D time-resolved contrast-enhanced MR angiography. J Magn Reson Imaging 2015; 42(1): 3-22.
- 31Willinek WA, Hadizadeh DR, von Falkenhausen M, et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): More than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging 2008; 27(6): 1455-1460.
- 32Kramer U, Ernemann U, Fenchel M, et al. Pretreatment evaluation of peripheral vascular malformations using low-dose contrast-enhanced time-resolved 3D MR angiography: Initial results in 22 patients. AJR Am J Roentgenol 2011; 196(3): 702-711.
- 33Benson DG, Schiebler ML, Repplinger MD, et al. Contrast-enhanced pulmonary MRA for the primary diagnosis of pulmonary embolism: Current state of the art and future directions. Br J Radiol 2017; 90(1074):20160901.
- 34Blackham KA, Passalacqua MA, Sandhu GS, Gilkeson RC, Griswold MA, Gulani V. Applications of time-resolved MR angiography. AJR Am J Roentgenol 2011; 196(5): W613-W620.
- 35Quint LE, Liu PS, Booher AM, Watcharotone K, Myles JD. Proximal thoracic aortic diameter measurements at CT: Repeatability and reproducibility according to measurement method. Int J Cardiovasc Imaging 2013; 29(2): 479-488.
- 36Morita S, Masukawa A, Suzuki K, Hirata M, Kojima S, Ueno E. Unenhanced MR angiography: Techniques and clinical applications in patients with chronic kidney disease. Radiographics 2011; 31(2): E13-E33.
- 37Fuchs F, Laub G, Othomo K. TrueFISP—Technical considerations and cardiovascular applications. Eur J Radiol 2003; 46(1): 28-32.
- 38Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003; 13(11): 2409-2418.
- 39Haacke EM, Tkach JA. Fast MRI: Techniques and clinical applications. AJR Am J Roentgenol 1990; 155(5): 951-964.
- 40Veldhoen S, Behzadi C, Lenz A, et al. Non-contrast MR angiography at 1.5 Tesla for aortic monitoring in Marfan patients after aortic root surgery. J Cardiovasc Magn Reson 2017; 19(1):82.
- 41François CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Pulmonary vein imaging with unenhanced three-dimensional balanced steady-state free precession MR angiography: Initial clinical evaluation. Radiology 2009; 250(3): 932-939.
- 42Krishnam MS, Tomasian A, Malik S, et al. Three-dimensional imaging of pulmonary veins by a novel steady-state free-precession magnetic resonance angiography technique without the use of intravenous contrast agent: Initial experience. Invest Radiol 2009; 44(8): 447-453.
- 43Krishnam MS, Tomasian A, Deshpande V, et al. Noncontrast 3D steady-state free-precession magnetic resonance angiography of the whole chest using nonselective radiofrequency excitation over a large field of view: Comparison with single-phase 3D contrast-enhanced magnetic resonance angiography. Invest Radiol 2008; 43(6): 411-420.
- 44François CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Unenhanced MR angiography of the thoracic aorta: initial clinical evaluation. AJR Am J Roentgenol 2008; 190(4): 902-906.
- 45Götte MJW, Rüssel IK, de Roest GJ, et al. Magnetic resonance imaging, pacemakers and implantable cardioverter-defibrillators: Current situation and clinical perspective. Neth Heart J 2010; 18(1): 31-37.
- 46Roguin A, Zviman MM, Meininger GR, et al. Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe. Circulation 2004; 110(5): 475-482.
- 47Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber E. Artifacts in body MRI: Their appearance and how to eliminate them. Eur Radiol 2007; 17(5): 1242-1255.
- 48Saloner D. The AAPM/RSNA physics tutorial for residents. An introduction to MR angiography. Radiographics 1995; 15(2): 453-465.
- 49Willinek WA, Born M, Simon B, et al. Time-of-flight MR angiography: Comparison of 3.0-T imaging and 1.5-T imaging—Initial experience. Radiology 2003; 229(3): 913-920.
- 50Carr JC, Carroll TJ. Magnetic resonance angiography: Principles and applications. New York: Springer Science & Business Media; 2011.
- 51Grayev A, Shimakawa A, Cousins J, Turski P, Brittain J, Reeder S. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation. J Magn Reson Imaging 2009; 29(6): 1367-1374.
- 52Ko S-F, Wan Y-L, Ng S-H, et al. MRI of thoracic vascular lesions with emphasis on two-dimensional time-of-flight MR angiography. Br J Radiol 1999; 72(858): 613-620.
- 53Edelman RR, Koktzoglou I. Noncontrast MR angiography: An update. J Magn Reson Imaging 2019; 49(2): 355-373.
- 54Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: Technical considerations and clinical feasibility. Magn Reson Med 2010; 63(4): 951-958.
- 55Saini A, Wallace A, Albadawi H, et al. Quiescent-interval single-shot magnetic resonance angiography. Diagnostics (Basel) 2018; 8(4):pii: E84.
- 56Dong HZ, Worters PW, Wu HH, Ingle RR, Vasanawala SS, Nishimura DG. Non-contrast-enhanced renal angiography using multiple inversion recovery and alternating TR balanced steady state free precession. Magn Reson Med 2013; 70(2): 527-536.
- 57Hodnett PA, Koktzoglou I, Davarpanah AH, et al. Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology 2011; 260(1): 282-293.
- 58Meuli RA, Wedeen VJ, Geller SC, et al. MR gated subtraction angiography: Evaluation of lower extremities. Radiology 1986; 159(2): 411-418.
- 59Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging 2000; 12(5): 776-783.
- 60Miyazaki M, Takai H, Sugiura S, Wada H, Kuwahara R, Urata J. Peripheral MR angiography: Separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology 2003; 227(3): 890-896.
- 61Lim RP, Hecht EM, Xu J, et al. 3D nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: Preliminary clinical experience. J Magn Reson Imaging 2008; 28(1): 181-189.
- 62Nishimura DG, Macovski A, Pauly JM, Conolly SM. MR angiography by selective inversion recovery. Magn Reson Med 1987; 4(2): 193-202.
- 63Spuentrup E, Manning WJ, Börnert P, Kissinger KV, Botnar RM, Stuber M. Renal arteries: Navigator-gated balanced fast field-echo projection MR angiography with aortic spin labeling: Initial experience. Radiology 2002; 225(2): 589-596.
- 64Wyttenbach R, Braghetti A, Wyss M, et al. Renal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced MR angiography. Radiology 2007; 245(1): 186-195.
- 65Shimada K, Isoda H, Okada T, et al. Non-contrast-enhanced hepatic MR angiography with true steady-state free-precession and time spatial labeling inversion pulse: Optimization of the technique and preliminary results. Eur J Radiol 2009; 70(1): 111-117.
- 66Shimada K, Isoda H, Okada T, et al. Non-contrast-enhanced MR portography with time-spatial labeling inversion pulses: Comparison of imaging with three-dimensional half-Fourier fast spin-echo and true steady-state free-precession sequences. J Magn Reson Imaging 2009; 29(5): 1140-1146.
- 67Shimada K, Isoda H, Okada T, et al. Non-contrast-enhanced MR angiography for selective visualization of the hepatic vein and inferior vena cava with true steady-state free-precession sequence and time-spatial labeling inversion pulses: Preliminary results. J Magn Reson Imaging 2009; 29(2): 474-479.
- 68Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMRI using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984; 8(4): 588-593.
- 69Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986; 10(5): 715-722.
- 70Markl M, Schnell S, Wu C, et al. Advanced flow MRI: Emerging techniques and applications. Clin Radiol 2016; 71(8): 779-795.
- 71Wentland AL, Grist TM, Wieben O. Review of MRI-based measurements of pulse wave velocity: A biomarker of arterial stiffness. Cardiovasc Diagn Ther 2014; 4(2): 193-206.
- 72Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MRI: Basic facts and implementation. Radiographics 2002; 22(3): 651-671.
- 73Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging 2012; 36(5): 1015-1036.
- 74Azarine A, Garçon P, Stansal A, et al. Four-dimensional flow MRI: Principles and cardiovascular applications. Radiographics 2019; 39(3): 632-648.
- 75Allen BD, Aouad PJ, Burris NS, et al. Detection and hemodynamic evaluation of flap fenestrations in Type B aortic dissection with 4D flow MRI: Comparison with conventional MRI and CT angiography. Radiol Cardiothorac Imaging 2019; 1(1):e180009.
- 76Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN. Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg 1995; 110(3): 704-714.
- 77Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J Magn Reson Imaging 2001; 13(5): 690-698.
- 78Garcia J, Barker AJ, Markl M. The role of imaging of flow patterns by 4D flow MRI in aortic stenosis. JACC Cardiovasc Imaging 2019; 12(2): 252-266.
- 79Watanabe T, Isoda H, Fukuyama A, et al. Accuracy of the flow velocity and three-directional velocity profile measured with three-dimensional cine phase-contrast MRI: Verification on scanners from different manufacturers. Magn Reson Med Sci 2019; 18(4): 265-271.
- 80van der Geest RJ, Garg P. Advanced analysis techniques for intra-cardiac flow evaluation from 4D flow MRI. Curr Radiol Rep 2016; 4:38.
- 81Ma LE, Markl M, Chow K, et al. Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn Reson Med 2019; 81(6): 3675-3690.
- 82Sherrah AG, Callaghan FM, Puranik R, et al. Multi-velocity encoding four-dimensional flow magnetic resonance imaging in the assessment of chronic aortic dissection. Aorta (Stamford) 2017; 5(3): 80-90.
- 83Callaghan FM, Kozor R, Sherrah AG, et al. Use of multi-velocity encoding 4D flow MRI to improve quantification of flow patterns in the aorta. J Magn Reson Imaging 2016; 43(2): 352-363.
- 84Ha H, Kim GB, Kweon J, et al. Multi-VENC acquisition of four-dimensional phase-contrast MRI to improve precision of velocity field measurement. Magn Reson Med 2016; 75(5): 1909-1919.
- 85Stemerman DH, Krinsky GA, Lee VS, Johnson G, Yang BM, Rofsky NM. Thoracic aorta: Rapid black-blood MRI with half-Fourier rapid acquisition with relaxation enhancement with or without electrocardiographic triggering. Radiology 1999; 213(1): 185-191.
- 86Song HK, Wright AC, Wolf RL, Wehrli FW. Multislice double inversion pulse sequence for efficient black-blood MRI. Magn Reson Med 2002; 47(3): 616-620.
- 87Matsumoto K, Yokota H, Mukai H, et al. Coronary vessel wall visualization via three-dimensional turbo spin-echo black blood imaging in Kawasaki disease. Magn Reson Imaging 2019; 62: 159-166.
- 88Swift AJ, Rajaram S, Marshall H, et al. Black blood MRI has diagnostic and prognostic value in the assessment of patients with pulmonary hypertension. Eur Radiol 2012; 22(3): 695-702.
- 89Aghayev A, Rybicki FJ. State-of-the-art magnetic resonance imaging in vascular thoracic outlet syndrome. Magn Reson Imaging Clin N Am 2015; 23(2): 309-320.
- 90Raptis CA, Sridhar S, Thompson RW, Fowler KJ, Bhalla S. Imaging of the patient with thoracic outlet syndrome. Radiographics 2016; 36(4): 984-1000.
- 91Hom JJ, Ordovas K, Reddy GP. Velocity-encoded cine MR imaging in aortic coarctation: Functional assessment of hemodynamic events. Radiographics 2008; 28(2): 407-416.