Musculoskeletal spectroscopy
Corresponding Author
Chris Boesch MD, PhD
Department of Clinical Research, MR-Spectroscopy and Methodology, University of Bern, Bern, Switzerland
Department of Clinical Research (AMSM), MR Center 1, University of Bern, University and Inselspital, CH-3010 Bern, SwitzerlandSearch for more papers by this authorCorresponding Author
Chris Boesch MD, PhD
Department of Clinical Research, MR-Spectroscopy and Methodology, University of Bern, Bern, Switzerland
Department of Clinical Research (AMSM), MR Center 1, University of Bern, University and Inselspital, CH-3010 Bern, SwitzerlandSearch for more papers by this authorAbstract
Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by 31P-MRS) and glycogen (by 13C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, 1H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of 1H-, 13C-, and 31P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications. J. Magn. Reson. Imaging 2007. © 2007 Wiley-Liss, Inc.
REFERENCES
- 1 Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 1974; 252: 285–287.
- 2 Ackerman JJH, Grove TH, Wong GG, Gadian DG, Radda GK. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 1980: 283: 167–170.
- 3 Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M, Falconer-Smith J. Examination of a case of suspected McArdle's syndrome by 31P nuclear magnetic resonance. N Engl J Med 1981; 304: 1338–1342.
- 4 Chance B, Eleff S, Bank W, Leigh JS, Warnell R. 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci USA 1982; 79: 7714–7718.
- 5 Edwards RHT, Wilkie DR, Dawson MJ, Gordon RE, Shaw D. Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1982; 1: 725–731.
- 6 Haselgrove JC, Subramanian VH, Leigh JS, Gyulai L, Chance B. In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance. Science 1982; 220: 1170.
- 7 Williams SR, Gadian DG, Proctor E, et al. Proton NMR studies of muscle metabolites in vivo. J Magn Reson 1985; 63: 406–412.
- 8 De Graaf RA. In vivo NMR spectroscopy: principles and techniques. 1st ed. Chichester, UK: John Wiley & Sons; 1999. 600 p.
- 9 Boesch C. Magnetic resonance spectroscopy: basic principles. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues, editors. Clinical magnetic resonance imaging. 3rd ed. Philadelphia, PA: Saunders, Elsevier; 2005. p 459–492.
- 10 Bottomley PA. Selective volume method for performing localized NMR spectroscopy. 1984; US Patent 4,480,228.
- 11 Frahm J, Merboldt KD, Haenicke W. Localized proton spectroscopy using stimulated echoes. J Magn Reson 1987; 72: 502–508.
- 12 Park JH, Brown RL, Park CR, et al. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31-P magnetic resonance spectroscopy during exercise. Proc Natl Acad Sci USA 1987; 84: 8976–8980.
- 13 Meyer RA. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 1988; 254: C548–C553.
- 14 McCully KK, Boden BP, Tuchler M, Fountain MR, Chance B. Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy. J Appl Physiol 1989; 67: 926–932.
- 15 Yoshizaki K, Watari H, Radda GK. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochim Biophys Acta 1990; 1051: 144–150.
- 16 Minotti JR, Johnson EC, Hudson TL, et al. Training induced skeletal muscle adaptations are independent of systemic adaptations. J Appl Physiol 1990; 68: 289–294.
- 17 Gruetter R, Kaelin P, Boesch C, Martin E, Werner B. Non-invasive P-31 magnetic resonance spectroscopy revealed McArdle disease in an asymptomatic child. Eur J Pediatr 1990; 149: 483–486.
- 18 Roth K, Weiner MW. Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with 31P NMR spectroscopy. Magn Reson Med 1991; 22: 505–511.
- 19 deKerviler E, Leroy-Willig A, Jehenson P, Duboc D, Eymard B, Syrota A. Exercise-induced muscle modifications: study of healthy subjects and patients with metabolic myopathies with MR imaging and 31-P spectroscopy. Radiology 1991; 181: 259–264.
- 20 Rothman DL, Shulman RG, Shulman GI. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate: evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 1992; 89: 1069–1075.
- 21 Quistorff B, Johansen L, Sahlin K. Absence of phosphocreatine resynthesis in human calf muscle during ischemic recovery. Biochem J 1992; 291: 681–686.
- 22 Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B. Bio-energetic changes in human gastrocnemius muscle 1–2 days after strenuous exercise. Acta Physiol Scand 1992; 146: 11–14.
- 23 Binzoni T, Ferretti G, Schenker K, Cerretelli P. Phosphocreatine hydrolysis by 31P-NMR at the onset of constant-load exercise in humans. J Appl Physiol 1992; 73: 1644–1649.
- 24 Moonen CT, Dimand RJ, Cox KL. The noninvasive determination of linoleic acid content of human adipose tissue by natural abundance carbon-13 nuclear magnetic resonance. Magn Reson Med 1988; 6: 140–157.
- 25 Dimand RJ, Moonen CTW, Chu SC, Bradbury EM, Kurland G, Cox KL. Adipose tissue abnormalities in cystic fibrosis: Noninvasive determination of mono- and polyunsaturated fatty acid by carbon-13 topical magnetic resonance spectroscopy. Pediatr Res 1988; 24: 243–246.
- 26 Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 1990; 322: 223–228.
- 27 Beckmann N, Seelig J, Wick H. Analysis of glycogen storage disease by in vivo 13C NMR: comparison of normal volunteers with a patient. Magn Reson Med 1990; 16: 150–160.
- 28 Jehenson P, Duboc D, Bloch G, Fardeau M, Syrota A. Diagnosis of muscular glycogenosis by in vivo natural abundance 13C NMR spectroscopy. Neuromuscul Disord 1991; 1: 99–101.
- 29 Taylor R, Price TB, Rothman DL, Shulman RG, Shulman GI. Validation of 13C NMR measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples. Magn Reson Med 1992; 27: 13–20.
- 30 Saner M, McKinnon G, Boesiger P. Glycogen detection by in vivo 13C NMR: a comparison of proton decoupling and polarization transfer. Magn Reson Med 1992; 28: 65–73.
- 31 Bachert P, Bellemann ME, Layer G, Koch T, Semmler W, Lorenz WJ. In vivo 1H, 31P-{1H} and 13C-{1H} magnetic resonance spectroscopy of malignant histiocytoma and skeletal muscle tissue in man. NMR Biomed 1992; 5: 161–170.
- 32 Bachert-Baumann P, Ermark F, Zabel HJ, Sauter R, Semmler W, Lorenz WJ. In vivo nuclear Overhauser effect in 31P-{1H} double resonance experiments in a 1.5-T whole-body MR system. Magn Reson Med 1990; 15: 165–172.
- 33 Wang SX, Caines GH, Schleich T. 31P-{1H} nuclear Overhauser effects of phosphorus-containing metabolites in chemical exchange between free and macromolecular states. J Magn Reson Series B 1993; 102: 47–53.
- 34 Brown TR, Stoyanova R, Greenberg T, Srinivasan R, Murphy-Boesch J. NOE enhancements and T1 relaxation times of phosphorylated metabolites in human calf muscle at 1.5 Tesla. Magn Reson Med 1995; 33: 417–421.
- 35 Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Haenicke W, Sauter R. Localized proton NMR spectroscopy using stimulated echoes: applications to human skeletal muscle in vivo. Magn Reson Med 1991; 17: 82–94.
- 36 Pan JW, Hamm JR, Hetherington HP, Rothman DL, Shulman RG. Correlation of lactate and pH in human skeletal muscle after exercise by 1H NMR. Magn Reson Med 1991; 20: 57–65.
- 37 Barany M, Venkatasubramanian PN. Volume-selective water-suppressed proton spectra of human brain and muscle in vivo. NMR Biomed 1989; 2: 7–11.
- 38 Narayana PA, Hazle JD, Jackson EF, Fotedar LK, Kulkarni MV. In vivo 1H spectroscopic studies of human gastrocnemius muscle at 1.5 T. Magn Reson Imaging 1988; 6: 481–485.
- 39 Pan JW, Hamm JR, Rothman DL, Shulman RG. Intracellular pH in human skeletal muscle by 1H NMR. Proc Natl Acad Sci USA 1988; 85: 7836–7839.
- 40 Howe FA, Maxwell RJ, Saunders DE, Brown MM, Griffiths JR. Proton spectroscopy in vivo. Magn Reson Q 1993; 9: 31–59.
- 41 Kreis R, Koster M, Kamber M, Hoppeler H, Boesch C. Peak assignment in localized 1H MR spectra of human muscle based on oral creatine supplementation. Magn Reson Med 1997; 37: 159–163.
- 42 Kreis R, Boesch C. Spatially localized, one- and two-dimensional NMR spectroscopy and in vivo application to human muscle. J Magn Reson Ser B 1996; 113: 103–118.
- 43 Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 1993; 29: 158–167.
- 44 Boesch C, Slotboom H, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 1997; 37: 484–493.
- 45 Zehnder M, Ith M, Kreis R, Saris W, Boutellier U, Boesch C. Gender-specific usage of intramyocellular lipids and glycogen during exercise. Med Sci Sports Exerc 2005; 37: 1517–1524.
- 46 Petersen KF, Hendler R, Price T, et al. 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 1998; 47: 381–386.
- 47 Rothman DL, Magnusson I, Cline G, et al. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1995; 92: 983–987.
- 48 Perseghin G, Price TB, Petersen KF, et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 1996; 335: 1357–1362.
- 49 Roussel R, Carlier PG, Robert JJ, Velho G, Bloch G. 13C/31P NMR studies of glucose transport in human skeletal muscle. Proc Natl Acad Sci USA 1998; 95: 1313–1318.
- 50 Krebs M, Krssak M, Bernroider E, et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002; 51: 599–605.
- 51 Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664–671.
- 52 Vanderthommen M, Duteil S, Wary C, et al. A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 2003; 94: 1012–1024.
- 53 Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300: 1140–1142.
- 54 Decombaz J, Schmitt B, Ith M, et al. Post-exercise fat intake repletes intramyocellular lipids, but no faster in trained than in sedentary subjects. Am J Physiol 2001; 281: R760–R769.
- 55 Boesch C, Decombaz J, Slotboom J, Kreis R. Observation of intramyocellular lipids by means of 1H-magnetic resonance spectroscopy. Proc Nutr Soc 1999; 58: 841–850.
- 56 Krssak M, Petersen KF, Bergeron R, et al. Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab 2000; 85: 748–754.
- 57 Boesch C, Kreis R. Imaging and spectroscopy of muscle. In: IR Young, DM Grant, RK Harris, editors. Methods in biomedical magnetic resonance imaging and spectroscopy (encyclopedia of nuclear magnetic resonance). Chichester, UK: John Wiley & Sons; 2000. p 1307–1316.
- 58 Reddy R, Bolinger L, Shinnar M, Noyszewski E, Leigh JS. Detection of residual quadrupolar interaction in human skeletal muscle and brain in vivo via multiple quantum filtered sodium NMR spectra. Magn Reson Med 1995; 33: 134–139.
- 59 Kushnir T, Knubovets T, Itzchak Y, et al. In vivo 23Na NMR studies of myotonic dystrophy. Magn Reson Med 1997; 37: 192–196.
- 60 Kupriyanov V. Biomedical applications of MRS/I of uncommon nuclei. NMR Biomed 2005; 18: 65–66.
- 61 Buchli R, Meier D, Martin E, Boesiger P. Assessment of absolute metabolite concentrations in human tissue by 31P MRS in vivo. Part II: Muscle, liver, kidney. Magn Reson Med 1994; 32: 453–458.
- 62 Roser W, Beckmann N, Wiesmann U, Seelig J. Absolute quantitation of the hepatic glycogen content in a patient with glycogen storage disease by 13C magnetic resonance spectroscopy. Magn Reson Imaging 1996; 14: 1217–1220.
- 63
Tofts PS.
The noninvasive measurements of absolute metabolite concentrations in vivo using surface-coil NMR spectroscopy.
J Magn Reson
1988;
80:
84–95.
10.1016/0022-2364(88)90059-5 Google Scholar
- 64 Thulborn KR, Ackerman JJH. Absolute molar concentrations by NMR in inhomogeneous B1. A scheme for analysis of in vivo metabolites. J Magn Reson 1983; 55: 357–371.
- 65 Doyle VL, Buil M, Payne GS, Leach MO. Calculation of sensitivity correction factors for surface coil MRS. Magn Reson Med 1995; 33: 108–112.
- 66 Van Cauteren M, Miot F, Segebarth CM, Eisendrath H, Osteaux M, Willem R. Excitation characteristics of adiabatic half-passage RF pulses used in surface coil MR spectroscopy. application to 13C detection of glycogen in the rat liver. Phys Med Biol 1992; 37: 1055–1064.
- 67 Cady EB, Azzopardi D. Absolute quantitation of neonatal brain spectra acquired with surface coil localization. NMR Biomed 1989; 2: 305–311.
- 68 Tofts PS, Wray S. Noninvasive measurement of molar concentrations of 31P metabolites in vivo, using surface coil NMR spectroscopy. Magn Reson Med 1988; 6: 84–86.
- 69 Murphy-Boesch J, Jiang H, Stoyanova R, Brown TR. Quantification of phosphorus metabolites from chemical shift imaging spectra with corrections for point spread effects and B1 inhomogeneity. Magn Reson Med 1998; 39: 429–438.
- 70 Arias-Mendoza F, Zakian K, Schwartz A, et al. Methodological standardization for a multi-institutional in vivo trial of localized 31P MR spectroscopy in human cancer research. In vitro and normal volunteer studies. NMR Biomed 2004; 17: 382–391.
- 71 Wary C, Bloch G, Jehenson P, Carlier PG. C13 NMR spectroscopy of lipids: a simple method for absolute quantitation. Anticancer Res 1996; 16: 1479–1484.
- 72 Boesch C, Kreis R. Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle. NMR Biomed 2001; 14: 140–148.
- 73 Slotboom J, Boesch C, Kreis R. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 1998; 39: 899–911.
- 74 Hu J, Willcott MR, Moore GJ. Two-dimensional proton chemical-shift imaging of human muscle metabolites. J Magn Reson 1997; 126: 187–192.
- 75 Vermathen P, Kreis R, Boesch C. Distribution of intra-myocellular lipids in human calf muscles determined by MR spectroscopic imaging. Magn Reson Med 2004; 51: 253–262.
- 76 Hwang JH, Pan JW, Heydari S, Hetherington HP, Stein DT. Regional differences in intramyocellular lipids in humans observed by in vivo (1)H-MR spectroscopic imaging. J Appl Physiol 2001; 90: 1267–1274.
- 77 Larson-Meyer DE, Newcomer BR, Hunter GR. Influence of endurance running and recovery diet on intramyocellular lipid content in women: a 1H NMR study. Am J Physiol Endocrinol Metab 2002; 282: E95–E106.
- 78 Haupt CI, Schuff N, Weiner MW, Maudsley AA. Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med 1996; 35: 678–687.
- 79 Heerschap A, Luyten PR, vanderHeyden JI, Oosterwaal LJMP, den Hollander JA. Broadband proton decoupled natural abundance 13C NMR spectroscopy of humans at 1.5 T. NMR Biomed 1989; 2: 124–132.
- 80 Bottomley PA, Hardy CJ, Roemer PB, Mueller OM. Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans. Magn Reson Med 1989; 12: 348–363.
- 81 Ende G, Bachert P. Dynamic 13C–1H nuclear polarization of lipid methylene resonances applied to broadband-decoupled in vivo 13C MR spectroscopy of human breast and calf tissue. Magn Reson Med 1993; 30: 415–423.
- 82 Coutts GA, Bryant DJ. Proton decoupling in whole body carbon-13 MRS. In: DM Grant, RK Harris, editors. Encyclopedia of nuclear magnetic resonance. Chichester/Sussex, UK: Wiley; 1996. p 3829–3832.
- 83 Avison MJ, Rothman DL, Nadel E, Shulman RG. Detection of human muscle glycogen by natural abundance 13C NMR. Proc Natl Acad Sci USA 1988; 85: 1634–1636.
- 84 Bomsdorf H, Röschmann P, Wieland J. Sensitivity enhancement in whole-body natural abundance 13C spectroscopy using 13C/1H double-resonance techniques at 4 tesla. Magn Reson Med 1991; 22: 10–22.
- 85 Luyten PR, Bruntink G, Sloff FM, et al. Broadband proton decoupling in human 31P NMR spectroscopy. NMR Biomed 1989; 1: 177–183.
- 86 Berkowitz BA, Balaban RS. Improvement in 31P NMR signal-to-noise for ATP in vivo using homonuclear decoupling. Magn Reson Med 1989; 12: 249–252.
- 87 Murphy-Boesch J, Stoyanova R, Srinivasan R, et al. Proton-decoupled 31P chemical shift imaging of the human brain in normal volunteers. NMR Biomed 1993; 6: 173–180.
- 88 Lamerichs RMJN, Luyten PR. Proton decoupling during in vivo whole body phosphorus MRS. In: IR Young, DM Grant, RK Harris, editors. Methods in biomedical magnetic resonance imaging and spectroscopy (encyclopedia of nuclear magnetic resonance). Chichester/Sussex, UK: Wiley; 1999. p 774–777.
- 89 Renema WK, Klomp DW, Philippens ME, van den Bergh AJ, Wieringa B, Heerschap A. Magnetization transfer effect on the creatine methyl resonance studied by CW off-resonance irradiation in human skeletal muscle on a clinical MR system. Magn Reson Med 2003; 50: 468–473.
- 90 Leibfritz D, Dreher W. Magnetization transfer MRS. NMR Biomed 2001; 14: 65–76.
- 91 Nicolay K, van der Toorn A, Dijkhuizen RM. In vivo diffusion spectroscopy. An overview. NMR Biomed 1995; 8: 365–374.
- 92 Nicolay K, Braun KP, Graaf RA, Dijkhuizen RM, Kruiskamp MJ. Diffusion NMR spectroscopy. NMR Biomed 2001; 14: 94–111.
- 93 Kreis R, Boesch C. Liquid-crystal-like structures of human muscle demonstrated by in vivo observation of direct dipolar coupling in localized proton magnetic resonance spectroscopy. J Magn Reson Series B 1994; 104: 189–192.
- 94 Asllani I, Shankland E, Pratum T, Kushmerick M. Effects of pH and molecular charge on dipolar coupling interactions of solutes in skeletal muscle observed by DQF, 1H NMR spectroscopy. J Magn Reson 2003; 163: 124–132.
- 95 Schroder L, Bachert P. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy. J Magn Reson 2003; 164: 256–269.
- 96 Asllani I, Shankland E, Pratum T, Kushmerick M. Double quantum filtered (1)H NMR spectroscopy enables quantification of lactate in muscle. J Magn Reson 2001; 152: 195–202.
- 97 Asllani I, Shankland E, Pratum T, Kushmerick M. Anisotropic orientation of lactate in skeletal muscle observed by dipolar coupling in 1H NMR spectroscopy. J Magn Reson 1999; 139: 213–224.
- 98
Hanstock CC,
Thompson RB,
Trump ME,
Gheorghiu D,
Hochachka PW,
Allen PS.
Residual dipolar coupling of the Cr/PCr methyl resonance in resting human medial gastrocnemius muscle.
Magn Reson Med
1999;
42:
421–424.
10.1002/(SICI)1522-2594(199909)42:3<421::AID-MRM2>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 99
in't Zandt HJ,
Klomp DW,
Oerlemans F,
Wieringa B,
Hilbers CW,
Heerschap A.
Proton MR spectroscopy of wild-type and creatine kinase deficient mouse skeletal muscle: dipole-dipole coupling effects and post-mortem changes.
Magn Reson Med
2000;
43:
517–524.
10.1002/(SICI)1522-2594(200004)43:4<517::AID-MRM5>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 100 Vermathen P, Boesch C, Kreis R. Mapping fiber orientation in human muscle by proton MR spectroscopic imaging. Magn Reson Med 2003; 49: 424–432.
- 101 Ntziachristos V, Kreis R, Boesch C, Quistorff B. Dipolar resonance frequency shifts in 1H-MR spectra of skeletal muscle: confirmation in rats at 4.7 T in vivo and observation of changes post-mortem. Magn Reson Med 1997; 38: 33–39.
- 102 Kreis R, Jung B, Slotboom J, Felblinger J, Boesch C. Effect of exercise on the creatine resonances in 1H MR spectra of human skeletal muscle. J Magn Reson 1999; 137: 350–357.
- 103 in't Zandt HJ, de Groof AJ, Renema WK, et al. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. J Physiol 2003; 548: 847–858.
- 104 Jouvensal L, Carlier PG, Bloch G. Low visibility of lactate in excised rat muscle using double quantum proton spectroscopy. Magn Reson Med 1997; 38: 706–711.
- 105 Navon G, Shinar H, Eliav U, Seo Y. Multiquantum filters and order in tissues. NMR Biomed 2001; 14: 112–132.
- 106 Kmiecik JA, Gregory CD, Liang ZP, Hrad DE, Lauterbur PC, Dawson MJ. Quantitative lactate-specific MR imaging and 1H spectroscopy of skeletal muscle at macroscopic and microscopic resolutions using a zero-quantum/double-quantum coherence filter and SLIM/GSLIM localization. Magn Reson Med 1997; 37: 840–850.
- 107 Rothman DL. Studies of metabolic compartmentation and glucose transport using in vivo MRS. NMR Biomed 2001; 14: 149–160.
- 108 Kent-Braun JA, Miller RG, Weiner MW. Human skeletal muscle metabolism in health and disease: utility of magnetic resonance spectroscopy. Exerc Sport Sci Rev 1995; 23: 305–347.
- 109 Mattei JP, Bendahan D, Cozzone P. P–31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 2004; 56: 9–14.
- 110 Taylor DJ. Clinical utility of muscle MR spectroscopy. Semin Musculoskel Radiol 2000; 4: 481–502.
- 111 Martin PA, Gibson H, Edwards RHT. Peripheral muscle metabolism studied by MRS. In: IR Young, DM Grant, RK Harris, editors. Methods in biomedical magnetic resonance imaging and spectroscopy (encyclopedia of nuclear magnetic resonance). Chichester, UK: John Wiley & Sons; 2000. p 1337–1347.
- 112 Heerschap A, Houtman C, in't Zandt HJ, van den Bergh AJ, Wieringa B. Introduction to in vivo 31P magnetic resonance spectroscopy of (human) skeletal muscle. Proc Nutr Soc 1999; 58: 861–870.
- 113 Kent-Braun JA, Miller RG, Weiner MW. Magnetic resonance spectroscopy studies of the human muscle. Radiol Clin North Am 1994; 32: 313–335.
- 114 Ross B, Michaelis T. Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 1994; 10: 191–247.
- 115 Kemp GJ. Physiological constraints on changes in pH and phosphorus metabolite concentrations in ischemically exercising muscle: implications for metabolic control and for the interpretation of 31P-magnetic resonance spectroscopic studies. Magn Reson Mater Phy 1997; 5: 231–241.
- 116 Hogan MC, Richardson RS, Haseler LJ. Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. J Appl Physiol 1999; 86: 1367–1373.
- 117 Montain SJ, Smith SA, Mattot RP, Zientara GP, Jolesz FA, Sawka MN. Hypohydration effects on skeletal muscle performance and metabolism: a 31P-MRS study. J Appl Physiol 1998; 84: 1889–1894.
- 118 Kemp GJ, Taylor DJ, Styles P, Radda GK. The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery. NMR Biomed 1993; 6: 73–83.
- 119 Roussel M, Mattei JP, Le Fur Y, Ghattas B, Cozzone PJ, Bendahan D. Metabolic determinants of the onset of acidosis in exercising human muscle: a 31P-MRS study. J Appl Physiol 2003; 94: 1145–1152.
- 120 Bendahan D, Giannesini B, Cozzone PJ. Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach. Cell Mol Life Sci 2004; 61: 1001–1015.
- 121 Giannesini B, Cozzone PJ, Bendahan D. Non-invasive investigations of muscular fatigue: metabolic and electromyographic components. Biochimie 2003; 85: 873–883.
- 122 Crowther GJ, Carey MF, Kemper WF, Conley KE. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am J Physiol Endocrinol Metab 2002; 282: E67–E73.
- 123 Crowther GJ, Kemper WF, Carey MF, Conley KE. Control of glycolysis in contracting skeletal muscle. II. Turning it off. Am J Physiol Endocrinol Metab 2002; 282: E74–E79.
- 124 Zange J, Grehl T, Disselhorst-Klug C, et al. Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle's disease: a noninvasive 31P-MRS and EMG study. Muscle Nerve 2003; 27: 728–736.
- 125 Russ DW, Vandenborne K, Walter GA, Elliott M, Binder-Macleod SA. Effects of muscle activation on fatigue and metabolism in human skeletal muscle. J Appl Physiol 2002; 92: 1978–1986.
- 126 Conley KE, Kemper WF, Crowther GJ. Limits to sustainable muscle performance: interaction between glycolysis and oxidative phosphorylation. J Exp Biol 2001; 204: 3189–3194.
- 127 Kent-Braun JA. Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol 1999; 80: 57–63.
- 128 Harkema SJ, Meyer RA. Effect of acidosis on control of respiration in skeletal muscle. Am J Physiol 1997; 272: C491–C500.
- 129 Vandenborne K, Walter G, Leigh JS, Goelman G. pH heterogeneity during exercise in localized spectra from single human muscles. Am J Physiol 1993; 265: C1332–C1339.
- 130 Rossiter HB, Ward SA, Howe FA, Kowalchuk JM, Griffiths JR, Whipp BJ. Dynamics of intramuscular 31P-MRS P(i) peak splitting and the slow components of PCr and O2 uptake during exercise. J Appl Physiol 2002; 93: 2059–2069.
- 131 Houtman CJ, Heerschap A, Zwarts MJ, Stegeman DF. pH heterogeneity in tibial anterior muscle during isometric activity studied by (31)P-NMR spectroscopy. J Appl Physiol 2001; 91: 191–200.
- 132
Yoshida T,
Watari H,
Tagawa K.
Effects of active and passive recoveries on splitting of the inorganic phosphate peak determined by 31P-nuclear magnetic resonance spectroscopy.
NMR Biomed
1996;
9:
13–19.
10.1002/(SICI)1099-1492(199602)9:1<13::AID-NBM394>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 133 Gupta RK, Moore RD. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem 1980: 255: 3987–3993.
- 134 Binzoni T, Ngo L, Janssen M, et al. Age dependence of human gastrocnemius Mg2+: fitting 31P-NMR spectra using quantum mechanics-based prior knowledge. J Physiol Anthropol Appl Human Sci 2001; 20: 275–283.
- 135 Iotti S, Frassineti C, Alderighi L, Sabatini A, Vacca A, Barbiroli B. In vivo (31)P-MRS assessment of cytosolic [Mg(2+)] in the human skeletal muscle in different metabolic conditions. Magn Reson Imaging 2000; 18: 607–614.
- 136 Ward KM, Rajan SS, Wysong M, Radulovic D, Clauw DJ. Phosphorus nuclear magnetic resonance spectroscopy: in vivo magnesium measurements in the skeletal muscle of normal subjects. Magn Reson Med 1996; 36: 475–480.
- 137 Golding EM, Golding RM. Interpretation of 31P MRS spectra in determining intracellular free magnesium and potassium ion concentrations. Magn Reson Med 1995; 33: 467–474.
- 138 Wackerhage H, Hoffmann U, Essfeld D, Leyk D, Mueller K, Zange J. Recovery of free ADP, Pi, and free energy of ATP hydrolysis in human skeletal muscle. J Appl Physiol 1998; 85: 2140–2145.
- 139
Le Rumeur E,
Le Tallec N,
Kernec F,
de Certaines JD.
Kinetics of ATP to ADP beta-phosphoryl conversion in contracting skeletal muscle by in vivo 31P NMR magnetization transfer.
NMR Biomed
1997;
10:
67–72.
10.1002/(SICI)1099-1492(199704)10:2<67::AID-NBM451>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 140
Argov Z,
De Stefano N,
Arnold DL.
ADP recovery after a brief ischemic exercise in normal and diseased human muscle—a 31P MRS study.
NMR Biomed
1996;
9:
165–172.
10.1002/(SICI)1099-1492(199606)9:4<165::AID-NBM408>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 141 Kemp GJ, Taylor DJ, Thompson CH, et al. Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 1993; 6: 302–310.
- 142 Kemp GJ, Radda GK. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 1994; 10: 43–63.
- 143 Yoshida T, Watari H. Metabolic consequences of repeated exercise in long distance runners. Eur J Appl Physiol 1993; 67: 261–265.
- 144 Kreis R, Kamber M, Koster M, et al. Creatine supplementation—part II: in vivo magnetic resonance spectroscopy. Med Sci Sports Exerc 1999; 31: 1770–1777.
- 145 Iotti S, Gottardi G, Clementi V, Barbiroli B. The mono-exponential pattern of phosphocreatine recovery after muscle exercise is a particular case of a more complex behaviour. Biochim Biophys Acta 2004; 1608: 131–139.
- 146 Rossiter HB, Howe FA, Ward SA, Kowalchuk JM, Griffiths JR, Whipp BJ. Intersample fluctuations in phosphocreatine concentration determined by 31P-magnetic resonance spectroscopy and parameter estimation of metabolic responses to exercise in humans. J Physiol 2000; 528(Pt 2): 359–369.
- 147 Roussel M, Bendahan D, Mattei JP, Le Fur Y, Cozzone PJ. 31P magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim Biophys Acta 2000; 1457: 18–26.
- 148 Kemp GJ, Roberts N, Bimson WE, Bakran A, Frostick SP. Muscle oxygenation and ATP turnover when blood flow is impaired by vascular disease. Mol Biol Rep 2002; 29: 187–191.
- 149 Yoshida T, Watari H. Effect of circulatory occlusion on human muscle metabolism during exercise and recovery. Eur J Appl Physiol 1997; 75: 200–205.
- 150 Schunk K, Romaneehsen B, Rieker O, et al. Dynamic phosphorus–31 magnetic resonance spectroscopy in arterial occlusive disease: effects of vascular therapy on spectroscopic results. Invest Radiol 1998; 33: 329–335.
- 151 Zatina MA, Berkowitz HD, Gross GM, Maris JM, Chance B. 31P nuclear magnetic resonance spectroscopy: noninvasive biochemical analysis of the ischemic extremity. J Vasc Surg 1986; 3: 411–420.
- 152 Haseler LJ, Hogan MC, Richardson RS. Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol 1999; 86: 2013–2018.
- 153 Richardson RS, Leigh JS, Wagner PD, Noyszewski EA. Cellular PO2 as a determinant of maximal mitochondrial O(2) consumption in trained human skeletal muscle. J Appl Physiol 1999; 87: 325–331.
- 154 Rossiter HB, Ward SA, Doyle VL, Howe FA, Griffiths JR, Whipp BJ. Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. J Physiol 1999; 518(Pt 3): 921–932.
- 155 Kamber M, Koster M, Kreis R, Walker G, Boesch C, Hoppeler H. Creatine supplementation-part I: performance, clinical chemistry, and muscle volume. Med Sci Sports Exerc 1999; 31: 1763–1769.
- 156 Smith SA, Montain SJ, Zientara GP, Fielding RA. Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion. J Appl Physiol 2004; 96: 2288–2292.
- 157 Trump ME, Hanstock CC, Allen PS, Gheorghiu D, Hochachka PW. An (1)H-MRS evaluation of the phosphocreatine/creatine pool (tCr) in human muscle. Am J Physiol 2001; 280: R889–R896.
- 158 Vorgerd M, Zange J, Kley R, et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol 2002; 59: 97–101.
- 159 De Haan JH, Klomp DW, Tack CJ, Heerschap A. Optimized detection of changes in glucose–6-phosphate levels in human skeletal muscle by 31P MR spectroscopy. Magn Reson Med 2003; 50: 1302–1306.
- 160 Krebs M, Krssak M, Nowotny P, et al. Free fatty acids inhibit the glucose-stimulated increase of intramuscular glucose-6-phosphate concentration in humans. J Clin Endocrinol Metab 2001; 86: 2153–2160.
- 161 Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999; 341: 240–246.
- 162 Roden M, Shulman GI. Applications of NMR spectroscopy to study muscle glycogen metabolism in man. Annu Rev Med 1999; 50: 277–290.
- 163 McFarland EW, Kushmerick MJ, Moerland TS. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys J 1994; 67: 1912–1924.
- 164 Kruiskamp MJ, De Graaf RA, Van der Grond J, Lamerichs R, Nicolay K. Magnetic coupling between water and creatine protons in human brain and skeletal muscle, as measured using inversion transfer 1H-MRS. NMR Biomed 2001; 14: 1–4.
- 165
Kruiskamp MJ,
van Vliet G,
Nicolay K.
1H and (31)P magnetization transfer studies of hindleg muscle in wild-type and creatine kinase-deficient mice.
Magn Reson Med
2000;
43:
657–664.
10.1002/(SICI)1522-2594(200005)43:5<657::AID-MRM7>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 166 Wilhelm T, Bachert P. In vivo 31P echo-planar spectroscopic imaging of human calf muscle. J Magn Reson 2001; 149: 126–130.
- 167 Greenman RL, Elliott MA, Vandenborne K, Schnall MD, Lenkinski RE. Fast imaging of phosphocreatine using a RARE pulse sequence. Magn Reson Med 1998; 39: 851–854.
- 168 Chao H, Bowers JL, Holtzman D, Mulkern RV. RARE imaging of PCr in human forearm muscles. J Magn Reson Imaging 1997; 7: 1048–1055.
- 169
Nelson SJ,
Vigneron DB,
Star-Lack J,
Kurhanewicz J.
High spatial resolution and speed in MRSI.
NMR Biomed
1997;
10:
411–422.
10.1002/(SICI)1099-1492(199712)10:8<411::AID-NBM496>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 170 Ernst T, Lee JH, Ross BD. Direct 31P imaging in human limb and brain. J Comput Assist Tomogr 1993; 17: 673–680.
- 171 De Graaf RA, van Kranenburg A, Nicolay K. In vivo (31)P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle. Biophys J 2000; 78: 1657–1664.
- 172 Vorgerd M, Zange J. Carbohydrate oxidation disorders of skeletal muscle. Curr Opin Clin Nutr Metab Care 2002; 5: 611–617.
- 173 Salerno C, Iotti S, Lodi R, Crifo C, Barbiroli B. Failure of muscle energy metabolism in a patient with adenylosuccinate lyase deficiency. An in vivo study by phosphorus NMR spectroscopy. Biochim Biophys Acta 1997; 1360: 271–276.
- 174 Park JH, Olsen NJ, King JrL, et al. Use of magnetic resonance imaging and P-31 magnetic resonance spectroscopy to detect and quantify muscle dysfunction in the amyopathic and myopathic variants of dermatomyositis. Arthritis Rheum 1995; 38: 68–77.
- 175 Cea G, Bendahan D, Manners D, et al. Reduced oxidative phosphorylation and proton efflux suggest reduced capillary blood supply in skeletal muscle of patients with dermatomyositis and polymyositis: a quantitative 31P-magnetic resonance spectroscopy and MRI study. Brain 2002; 125: 1635–1645.
- 176 Park JH, Phothimat P, Oates CT, Hernanz-Schulman M, Olsen NJ. Use of P-31 magnetic resonance spectroscopy to detect metabolic abnormalities in muscles of patients with fibromyalgia. Arthritis Rheum 1998; 41: 406–413.
- 177 Lodi R, Kemp GJ, Muntoni F, et al. Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain 1999; 122: 121–130.
- 178 Lodi R, Cooper JM, Bradley JL, et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia [see comments]. Proc Natl Acad Sci USA 1999; 96: 11492–11495.
- 179 Mizuno M, Quistorff B, Theorell H, Theorell M, Chance B. Effects of oral supplementation of coenzyme Q10 on 31P-NMR detected skeletal muscle energy metabolism in middle-aged post-polio subjects and normal volunteers. Mol Aspects Med 1997; 18(Suppl): S291–S298.
- 180 Vissing J, Vissing SF, MacLean DA, Saltin B, Quistorff B, Haller RG. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies. J Clin Invest 1998; 101: 1654–1660.
- 181 Taivassalo T, De Stefano N, Argov Z, et al. Effects of aerobic training in patients with mitochondrial myopathies. Neurology 1998; 50: 1055–1060.
- 182 Kuhl CK, Layer G, Traeber F, Zierz S, Block W, Reiser M. Mitochondrial encephalomyopathy: correlation of P-31 exercise MR spectroscopy with clinical findings. Radiology 1994; 192: 223–230.
- 183 Taylor DJ, Krige D, Barnes PR, et al. A 31P magnetic resonance spectroscopy study of mitochondrial function in skeletal muscle of patients with Parkinson's disease. J Neurol Sci 1994; 125: 77–81.
- 184 Penn AM, Roberts T, Hodder J, Allen PS, Zhu G, Martin WR. Generalized mitochondrial dysfunction in Parkinson's disease detected by magnetic resonance spectroscopy of muscle. Neurology 1995; 45: 2097–2099.
- 185 Kemp GJ, Hands LJ, Ramaswami G, et al. Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy. Clin Sci (Colch) 1995; 89: 581–590.
- 186 Padfield KE, Astrakas LG, Zhang Q, et al. Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc Natl Acad Sci USA 2005; 102: 5368–5373.
- 187 Thompson CH, Kemp GJ, Taylor DJ, et al. Abnormal skeletal muscle bioenergetics in familial hypertrophic cardiomyopathy. Heart 1997; 78: 177–181.
- 188 Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 2003; 107: 3040–3046.
- 189 Bendahan D, Kozak-Ribbens G, Rodet L, Confort-Gouny S, Cozzone PJ. 31Phosphorus magnetic resonance spectroscopy characterization of muscular metabolic anomalies in patients with malignant hyperthermia: application to diagnosis. Anesthesiology 1998; 88: 96–107.
- 190 Kent-Braun JA, Ng AV, Doyle JW, Towse TF. Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 2002; 93: 1813–1823.
- 191 Horska A, Fishbein KW, Fleg JL, Spencer RG. The relationship between creatine kinase kinetics and exercise intensity in human forearm is unchanged by age. Am J Physiol Endocrinol Metab 2000; 279: E333–E339.
- 192 Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B. Clinical experience with 13C MRS in vivo. NMR Biomed 2003; 16: 358–369.
- 193 Roden M. Non-invasive studies of glycogen metabolism in human skeletal muscle using nuclear magnetic resonance spectroscopy. Curr Opin Clin Nutr Metab Care 2001; 4: 261–266.
- 194 Shulman RG, Rothman DL. 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 2001; 63: 15–48.
- 195 Price TB, Rothman DL, Shulman RG. NMR of glycogen in exercise. Proc Nutr Soc 1999; 58: 851–859.
- 196
Freeman DM,
Hurd R.
Decoupling: theory and practice. II. State of the art: in vivo applications of decoupling.
NMR Biomed
1997;
10:
381–393.
10.1002/(SICI)1099-1492(199712)10:8<381::AID-NBM495>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 197 Roussel R, Carlier PG, Wary C, Velho G, Bloch G. Evidence for 100% 13C NMR visibility of glucose in human skeletal muscle. Magn Reson Med 1997; 37: 821–824.
- 198 de Graaf AA, Mahle M, Mollney M, Wiechert W, Stahmann P, Sahm H. Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J Biotechnol 2000; 77: 25–35.
- 199 Previs SF, Cline GW, Shulman GI. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. Am J Physiol 1999; 277: E154–E160.
- 200 Malloy CR, Jones JG, Jeffrey FM, Jessen ME, Sherry AD. Contribution of various substrates to total citric acid cycle flux and anaplerosis as determined by 13C isotopomer analysis and O2 consumption in the heart. Magn Reson Mater Phy 1996; 4: 35–46.
- 201 Henry PG, Oz G, Provencher S, Gruetter R. Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed 2003; 16: 400–412.
- 202 Jucker BM, Rennings AJ, Cline GW, Petersen KF, Shulman GI. In vivo NMR investigation of intramuscular glucose metabolism in conscious rats. Am J Physiol 1997; 273: E139–E148.
- 203 Jones JG, Solomon MA, Sherry AD, Jeffrey FMH, Malloy CR. 13C NMR measurements of human gluconeogenic fluxes after ingestion of [U-13C]propionate, phenylacetate, and acetaminophen. Am J Physiol 1998; 275: E843–E852.
- 204 Lewandowski ED, Doumen C, White LT, LaNoue KF, Damico LA, Yu X. Multiplet structure of 13C NMR signal from glutamate and direct detection of tricarboxylic acid (TCA) cycle intermediates. Magn Reson Med 1996; 35: 149–154.
- 205 Sherry AD, Zhao P, Wiethoff A, Malloy CR. 13C isotopomer analyses in intact tissue using (13C)homonuclear decoupling. Magn Reson Med 1994; 31: 374–379.
- 206 Bertocci LA, Jones JG, Malloy CR, Victor RG, Thomas GD. Oxidation of lactate and acetate in rat skeletal muscle: analysis by 13C-nuclear magnetic resonance spectroscopy. J Appl Physiol 1997; 83: 32–39.
- 207 Bachelard H. Landmarks in the application of 13C-magnetic resonance spectroscopy to studies of neuronal/glial relationships. Dev Neurosci 1998; 20: 277–288.
- 208 Taylor R, Price TB, Katz LD, Shulman RG, Shulman GI. Direct measurement of change in muscle glycogen concentration after a mixed meal in normal subjects. Am J Physiol 1993; 265: E224–E229.
- 209 Gruetter R, Novotny EJ, Boulware SD, et al. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci USA 1992; 89: 1109–1112.
- 210 Gruetter R, Adriany G, Merkle H, Andersen PM. Broadband decoupled, 1H-localized 13C MRS of the human brain at 4 Tesla. Magn Reson Med 1996; 36: 659–664.
- 211 Watanabe H, Ishihara Y, Okamoto K, Oshio K, Kanamatsu T, Tsukada Y. In vivo 3D localized 13C spectroscopy using modified INEPT and DEPT. J Magn Reson 1998; 134: 214–222.
- 212 van den Bergh AJ, van den Boogert HJ, Heerschap A. Heteronuclear cross polarization for enhanced sensitivity of in vivo 13C MR spectroscopy on a clinical 1.5 T MR system. J Magn Reson 1998; 135: 93–98.
- 213
Thomas EL,
Cunnane SC,
Bell JD.
Critical assessment of in vivo 13C NMR spectroscopy and gas-liquid chromatography in the study of adipose tissue composition.
NMR Biomed
1998;
11:
290–296.
10.1002/(SICI)1099-1492(199810)11:6<290::AID-NBM524>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 214 Zehnder M, Rico-Sanz J, Kuhne G, Boutellier U. Resynthesis of muscle glycogen after soccer specific performance examined by 13C-magnetic resonance spectroscopy in elite players. Eur J Appl Physiol 2001; 84: 443–447.
- 215 Kohler G, Boutellier U. Glycogen reduction in non-exercising muscle depends on blood lactate concentration. Eur J Appl Physiol 2004; 92: 548–554.
- 216 Price TB, Krishnan-Sarin S, Rothman DL. Smoking impairs muscle recovery from exercise. Am J Physiol Endocrinol Metab 2003; 285: E116–E122.
- 217 Serlie MJ, De Haan JH, Tack CJ, et al. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis. Diabetes 2005; 54: 1277–1282.
- 218 Casey A, Mann R, Banister K, et al. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am J Physiol 2000; 278: E65–E75.
- 219 Rotman S, Slotboom J, Kreis R, Boesch C, Jequier E. Muscle glycogen recovery after exercise measured by 13C-MRS in humans: effect of nutritional solutions. MAGMA 2000; 11: 114–121.
- 220 Decombaz J, Fleith M, Hoppeler H, Kreis R, Boesch C. Effect of diet on the replenishment of intramyocellular lipids after exercise. Eur J Nutr 2000; 39: 244–247.
- 221 Boesch C, Kreis R. Observation of intramyocellular lipids by of 1H-magnetic resonance spectroscopy. Ann NY Acad Sci 2000; 904: 25–31.
- 222 Carey PE, Halliday J, Snaar JE, Morris PG, Taylor R. Direct assessment of muscle glycogen storage after mixed meals in normal and type 2 diabetic subjects. Am J Physiol Endocrinol Metab 2003; 284: E688–E694.
- 223 vandenBergh A, Houtman S, Heerschap A, et al. Muscle glycogen recovery after exercise during glucose and fructose intake monitored by 13C-NMR. J Appl Physiol 1996; 81: 1495–1500.
- 224 Price TB, Rothman DL, Taylor R, Avison MJ, Shulman GI, Shulman RG. Human muscle glycogen resynthesis after exercise: insulin-dependent and independent phases. J Appl Physiol 1994; 76: 104–111.
- 225 van den Bergh AJ, Tack CJ, van den Boogert HJ, Vervoort G, Smits P, Heerschap A. Assessment of human muscle glycogen synthesis and total glucose content by in vivo 13C MRS. Eur J Clin Invest 2000; 30: 122–128.
- 226 Hwang JH, Bluml S, Leaf A, Ross BD. In vivo characterization of fatty acids in human adipose tissue using natural abundance 1H decoupled 13C MRS at 1.5 T: clinical applications to dietary therapy. NMR Biomed 2003; 16: 160–167.
- 227 Wary C, Laforet P, Eymard B, et al. Evaluation of muscle glycogen content by 13C NMR spectroscopy in adult-onset acid maltase deficiency. Neuromuscul Disord 2003; 13: 545–553.
- 228 Hwang JH, Perseghin G, Rothman DL, et al. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest 1995; 95: 783–787.
- 229 Stellaard F, Elzinga H. Analytical techniques in biomedical stable isotope applications: (isotope ratio) mass spectrometry or infrared spectrometry? Isotopes Environ Health Stud 2005; 41: 345–361.
- 230 Wang Z, Noyszewski EA, Leigh JS. In vivo MRS measurement of deoxymyoglobin in human forearms. Magn Reson Med 1990; 14: 562–567.
- 231
Brillault-Salvat C,
Giacomini E,
Jouvensal L,
Wary C,
Bloch G,
Carlier PG.
Simultaneous determination of muscle perfusion and oxygenation by interleaved NMR plethysmography and deoxymyoglobin spectroscopy.
NMR Biomed
1997;
10:
315–323.
10.1002/(SICI)1099-1492(199710)10:7<315::AID-NBM489>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 232 Noyszewski EA, Chen EL, Reddy R, Wang Z, Leigh JS. A simplified sequence for observing deoxymyoglobin signals in vivo: myoglobin excitation with dynamic unexcitation and saturation of water and fat (MEDUSA). Magn Reson Med 1997; 38: 788–792.
- 233 Kreis R, Brügger K, Skjelsvik C, et al. Quantitative 1H magnetic resonance spectroscopy of myoglobin de- and re-oxygenation in skeletal muscle: reproducibility and effects of localization and disease. Magn Reson Med 2001; 46: 240–248.
- 234 Mole PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T. Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 1999; 277: R173–R180.
- 235 Baumgartner I, Thoeny HC, Kummer O, et al. Leg ischemia: assessment with MR angiography and spectroscopy. Radiology 2005; 234: 833–841.
- 236 vanDijk JE, Bosman DK, Chamuleau RAFM, Bovee WMMJ. A localized in vivo detection method for lactate using zero quantum coherence techniques. Magn Reson Med 1991; 22: 493–498.
- 237 Hurd RE, Freeman D. Proton editing and imaging of lactate. NMR Biomed 1991; 4: 73–80.
- 238 Bloch G, Jouvensal L, Carlier PG. 1H NMR determination of lactate 13C-enrichment in skeletal muscle: using a double quantum filter for the simultaneous editing of 13C- coupled and 13C-uncoupled methyl protons resonance. Magn Reson Med 1995; 34: 353–358.
- 239 Szczepaniak LS, Dobbins RL, Stein DT, McGarry JD. Bulk magnetic susceptibility effects on the assessment of intra- and extramycellular lipids in vivo. Magn Reson Med 2001; 47: 607–610.
- 240 Stein DT, Szczepaniak LS, Dobbins R, Malloy CR, McGarry JD. Skeletal muscle triglyceride stores are increased in insulin resistance. Diabetes 1997; 46(Suppl 1): 23A.
- 241 Machann J, Schick F, Jacob S, Lutz O, Häring HU, Claussen CD. MR-spectroscopic determination of extra- and intramyocellular lipids in human calf muscle and correlation with insulin sensitivity. Magn Reson Mater Phy 1998; 6(Suppl 1): 220.
- 242 Jacob S, Machann J, Rett K, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 1999; 48: 1113–1119.
- 243 Krssak M, Petersen KF, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999; 42: 113–116.
- 244 Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999; 48: 1600–1606.
- 245 Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. Annu Rev Nutr 2002; 22: 325–346.
- 246 Boden G. Pathogenesis of type 2 diabetes. Insulin resistance. Endocrinol Metab Clin North Am 2001; 30: 801–815.
- 247 Machann J, Steidle G, Thamer C, Mader I, Schick F. In vivo proton NMR studies in skeletal muscle. Ann Rep NMR Spectrosc 2003; 50: 1–74.
- 248 Machann J, Haring H, Schick F, Stumvoll M. Intramyocellular lipids and insulin resistance. Diabetes Obes Metab 2004; 6: 239–248.
- 249 van Loon LJ. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol 2004; 97: 1170–1187.
- 250 Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 1999; 276: E977–E989.
- 251 Thamer C, Machann J, Bachmann O, et al. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 2003; 88: 1785–1791.
- 252 Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86: 5755–5761.
- 253 van Loon LJ. Intramyocellular triacylglycerol as a substrate source during exercise. Proc Nutr Soc 2004; 63: 301–307.
- 254 Boesch C, Machann J, Vermathen P, Schick F. Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 2006; 19: 968–988.
- 255
Kreis R,
Jung B,
Rotman S,
Slotboom J,
Boesch C.
Non-invasive observation of acetyl-group buffering by 1H-MR spectroscopy in exercising human muscle.
NMR Biomed
1999;
12:
471–476.
10.1002/(SICI)1099-1492(199911)12:7<471::AID-NBM591>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 256 Damon BM, Hsu AC, Stark HJ, Dawson MJ. The carnosine C-2 proton's chemical shift reports intracellular pH in oxidative and glycolytic muscle fibers. Magn Reson Med 2003; 49: 233–240.
- 257 Jouvensal L, Carlier PG, Bloch G. Practical implementation of single-voxel double-quantum editing on a whole-body NMR spectrometer: localized monitoring of lactate in the human leg during and after exercise. Magn Reson Med 1996; 36: 487–490.
- 258 Kreutzer U, Wang DS, Jue T. Observing the 1H NMR signal of the myoglobin Val-E11 in myocardium. An index of cellular oxygenation. Proc Natl Acad Sci USA 1992; 89: 4731–4733.
- 259 Lehnert A, Machann J, Helms G, Claussen CD, Schick F. Diffusion characteristics of large molecules assessed by proton MRS on a whole-body MR system. Magn Reson Imaging 2004; 22: 39–46.
- 260 Machann J, Schick F, Jacob S, Lutz O, Claussen CD. An interleaved sampling strategy for MR spectroscopy in vivo: applications on human calf musculature. Magn Reson Imaging 2000; 18: 189–197.
- 261 Meyerspeer M, Krssak M, Kemp GJ, Roden M, Moser E. Dynamic interleaved (1)H/(31)P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig. Magn Reson Mater Phy 2005; 18: 257–262.
- 262
Lee RF,
Giaquinto R,
Constantinides C,
Souza S,
Weiss RG,
Bottomley PA.
A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner.
Magn Reson Med
2000;
43:
269–277.
10.1002/(SICI)1522-2594(200002)43:2<269::AID-MRM14>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 263 Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA. Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 2000; 216: 559–568.
- 264
Bansal N,
Szczepaniak L,
Ternullo D,
Fleckenstein JL,
Malloy CR.
Effect of exercise on (23)Na MRI and relaxation characteristics of the human calf muscle.
J Magn Reson Imaging
2000;
11:
532–538.
10.1002/(SICI)1522-2586(200005)11:5<532::AID-JMRI9>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 265 Eleff SM, Schnall MD, Ligetti L, et al. Concurrent measurements of cerebral blood flow, sodium, lactate, and high-energy phosphate metabolism using 19F, 23Na, 1H, and 31P nuclear magnetic resonance spectroscopy. Magn Reson Med 1988; 7: 412–424.
- 266 Elliott MA, Walter GA, Gulish H, et al. Volumetric measurement of human calf muscle from magnetic resonance imaging. Magn Reson Mater Phy 1997; 5: 93–98.
- 267 Fowler MD, Ryschon TW, Wysong RE, Combs CA, Balaban RS. Normalized metabolic stress for 31P-MR spectroscopy studies of human skeletal muscle: MVC vs. muscle volume. J Appl Physiol 1997; 83: 875–883.
- 268 Akima H, Foley JM, Prior BM, Dudley GA, Meyer RA. Vastus lateralis fatigue alters recruitment of musculus quadriceps femoris in humans. J Appl Physiol 2002; 92: 679–684.
- 269
Warfield SK,
Mulkern RV,
Winalski CS,
Jolesz FA,
Kikinis R.
An image processing strategy for the quantification and visualization of exercise-induced muscle MRI signal enhancement.
J Magn Reson Imaging
2000;
11:
525–531.
10.1002/(SICI)1522-2586(200005)11:5<525::AID-JMRI8>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 270 Van Donkelaar CC, Kretzers LJ, Bovendeerd PH, et al. Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat 1999; 194: 79–88.
- 271 van Doorn A, Bovendeerd PH, Nicolay K, Drost MR, Janssen JD. Determination of muscle fibre orientation using diffusion-weighted MRI. Eur J Morphol 1996; 34: 5–10.
- 272 Vermathen P, Boesch C, Maier SE, Kreis R. Comparison of fiber orientation in human muscle by short TE MRSI and diffusion weighted imaging. In: Proceedings of the 10th Annual Meeting of ISMRM, Honolulu, HI, USA, 2002. p 173.
- 273 Vandenborne K, Walter G, Ploutz-Snyder L, Dudley G, Elliott MA, De Meirleir K. Relationship between muscle T2* relaxation properties and metabolic state: a combined localized 31P-spectroscopy and 1H-imaging study. Eur J Appl Physiol 2000; 82: 76–82.
- 274 Reid RW, Foley JM, Jayaraman RC, Prior BM, Meyer RA. Effect of aerobic capacity on the T(2) increase in exercised skeletal muscle. J Appl Physiol 2001; 90: 897–902.
- 275 Toussaint JF, Kwong KK, M'Kparu F, Weisskoff RM, LaRaia PJ, Kantor HL. Interrelationship of oxidative metabolism and local perfusion demonstrated by NMR in human skeletal muscle. J Appl Physiol 1996; 81: 2221–2228.
- 276 Raynaud JS, Duteil S, Vaughan JT, et al. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: Validation by comparison with venous occlusion plethysmography. Magn Reson Med 2001; 46: 305–311.
- 277
Frank LR,
Wong EC,
Haseler LJ,
Buxton RB.
Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling.
Magn Reson Med
1999;
42:
258–267.
10.1002/(SICI)1522-2594(199908)42:2<258::AID-MRM7>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 278 Lebon V, Carlier PG, Brillault-Salvat C, Leroy-Willig A. Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study. Magn Reson Imaging 1998; 16: 721–729.
- 279 Carlier PG, Brillault-Salvat C, Giacomini E, Wary C, Bloch G. How to investigate oxygen supply, uptake, and utilization simultaneously by interleaved NMR imaging and spectroscopy of the skeletal muscle. Magn Reson Med 2005; 54: 1010–1013.
- 280 Machann J, Thamer C, Schnoedt B, et al. Standardized assessment of whole body adipose tissue topography by MRI. J Magn Reson Imaging 2005; 21: 455–462.
- 281 Machann J, Bachmann OP, Brechtel K, et al. Lipid content in the musculature of the lower leg assessed by fat selective MRI: intra- and interindividual differences and correlation with anthropometric and metabolic data. J Magn Reson Imaging 2003; 17: 350–357.
- 282 Sinha R, Dufour S, Petersen KF, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 2002; 51: 1022–1027.
- 283 Thomas EL, Saeed N, Hajnal JV, et al. Magnetic resonance imaging of total body fat. J Appl Physiol 1998; 85: 1778–1785.