Energy landscape roughness of the streptavidin–biotin interaction
Corresponding Author
Félix Rico
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 N.W. 10th Avenue, Miami, FL 33136, USA
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 N.W. 10th Avenue, Miami, FL 33136, USA.Search for more papers by this authorVincent T. Moy
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 N.W. 10th Avenue, Miami, FL 33136, USA
Search for more papers by this authorCorresponding Author
Félix Rico
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 N.W. 10th Avenue, Miami, FL 33136, USA
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 N.W. 10th Avenue, Miami, FL 33136, USA.Search for more papers by this authorVincent T. Moy
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 N.W. 10th Avenue, Miami, FL 33136, USA
Search for more papers by this authorAbstract
Molecular interactions between receptors and ligands can be characterized by their free energy landscape. In its simplest representation, the energy landscape is described by a barrier of certain height and width that determines the dissociation rate of the complex, as well as its dynamic strength. Some interactions, however, require a more complex landscape with additional barriers and roughness along the reaction coordinate. This roughness slows down the dissociation kinetics of the interaction and contributes to its dynamic strength. The streptavidin–biotin complex has been extensively studied due to its remarkably low dissociation kinetics. However, single molecule measurements from independent experiments showed scattered and disparate results. In this work, the energy landscape roughness of the streptavidin–biotin interaction was estimated to be in the range of 5–8kBT using dynamic force spectroscopy (DFS) measurements at three different temperatures. These results can be used to explain both its slow dissociation kinetics and the discrepancies in the reported force measurements. Copyright © 2007 John Wiley & Sons, Ltd.
REFERENCES
- Alcaraz J, Buscemi L, Puig-de-Morales M, Colchero J, Baro A, Navajas D. 2002. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18(3): 716–721.
- Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IET, Sauke TB, Shyamsunder E, Young RD. 1985. Protein states and protein quakes. Proc. Nat. Acad. Sci. USA 82(15): 5000–5004.
- Bell GI. 1978. Models for specific adhesion of cells to cells. Science 200(4342): 618–627.
- Brujic J, Hermans RI, Walther KA, Fernandez JM. 2006. Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin. Nat. Phy. 2(4): 282–286.
- Chilkoti A, Stayton PS. 1995. Molecular-origins of the slow streptavidin-biotin dissociation kinetics. J. Am. Chem. Soc. 117(43): 10622–10628.
- Chilkoti A, Tan PH, Stayton PS. 1995. Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex—contributions of tryptophan residue-79, residue-108, and residue-120. Proc. Nat. Acad. Sci. USA 92(5): 1754–1758.
- Derenyi I, Bartolo D, Ajdari A. 2004. Effects of intermediate bound states in dynamic force spectroscopy. Biophys. J. 86(3): 1263–1269.
- Evans E. 2001. Probing the relation between force—Lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30: 105–128.
- Evans E, Ritchie K. 1997. Dynamic strength of molecular adhesion bonds. Biophys. J. 72(4): 1541–1555.
- Florin EL, Moy VT, Gaub HE. 1994. Adhesion forces between individual ligand-receptor pairs. Science 264(5157): 415–417.
- Frauenfelder H, Sligar SG, Wolynes PG. 1991. The energy landscapes and motions of proteins. Science 254(5038): 1598–1603.
- Frauenfelder H, Wolynes PG, Austin RH. 1999. Biological physics. Rev. Mod. Phys. 71(2): S419–S430.
- Freitag S, Trong IL, Chilkoti A, Klumb LA, Stayton PS, Stenkamp RE. 1998. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex. J. Mol. Biol. 279(1): 211–221.
- Grubmuller H, Heymann B, Tavan P. 1996. Ligand binding: molecular mechanics calculation of the streptavidin biotin rupture force. Science 271(5251): 997–999.
- Hanggi P, Talkner P, Borkovec M. 1990. Reaction-rate theory—50 years after Kramers. Rev. Mod. Phys. 62(2): 251–341.
- Hutter JL, Bechhoefer J. 1993. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64(7): 1868–1873.
- Hyeon CB, Thirumalai D. 2003. Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc. Nat. Acad. Sci. USA 100(18): 10249–10253.
- Hyre DE, Amon LM, Penzotti JE, Le Trong I, Stenkamp RE, Lybrand TP, Stayton PS. 2002. Early mechanistic events in biotin dissociation from streptavidin. Nat. Struct. Biol. 9(8): 582–585.
- Hyre DE, Trong IL, Merritt EA, Eccleston JF, Green NM, Stenkamp RE, Stayton PS. 2006. Cooperative hydrogen bond interactions in the streptavidin-biotin system 10.1110/ps.051970306. Protein Sci. 15(3): 459–467.
- Janovjak H, Knaus H, Muller DJ. 2007. Transmembrane helices have rough energy surfaces. J. Am. Chem. Soc. 129(2): 246–247.
-
Kramers HA.
1940.
Brownian motion in a field of force and the diffusion model of chemical reactions.
Physica
7(4):
304.
10.1016/S0031-8914(40)90098-2 Google Scholar
- Lee GU, Kidwell DA, Colton RJ. 1994. Sensing discrete streptavidin biotin interactions with atomic-force microscopy. Langmuir 10(2): 354–357.
- Li FY, Redick SD, Erickson HP, Moy VT. 2003. Force measurements of the alpha(5)beta(1) integrin-fibronectin interaction. Biophys. J. 84(2): 1252–1262.
- Marshall BT, Sarangapani KK, Lou JH, McEver RP, Zhu C. 2005. Force history dependence of receptor-ligand dissociation. Biophys. J. 88(2): 1458–1466.
- Merkel R, Nassoy P, Leung A, Ritchie K, Evans E. 1999. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397(6714): 50–53.
- Moy VT, Florin EL, Gaub. HE. 1994. Intermolecular forces and energies between ligands and receptors. Science 266(5183): 257–259.
- Neuert G, Albrecht C, Pamir E, Gaub. HE. 2006. Dynamic force spectroscopy of the digoxigenin-antibody complex. FEBS Lett. 580(2): 505–509.
- Nevo R, Brumfeld V, Kapon R, Hinterdorfer P, Reich Z. 2005. Direct measurement of protein energy landscape roughness. EMBO Rep. 6(5): 482–486.
- Pincet F, Husson J. 2005. The solution to the streptavidin-biotin paradox: the influence of history on the strength of single molecular bonds. Biophys. J. 89(6): 4374–4381.
- Pollak E, Talkner P. 2005. Reaction rate theory: what it was, where is it today, and where is it going? Chaos 15(2): 26116.
- Schlierf M, Rief M. 2005. Temperature softening of a protein in single-molecule experiments. J. Mol. Biol. 354(2): 497–503.
- Schumakovitch I, Grange W, Strunz T, Bertoncini P, Guntherodt HJ, Hegner M. 2002. Temperature dependence of unbinding forces between complementary DNA strands. Biophys. J. 82(1): 517–521.
- Stayton PS, Freitag S, Klumb LA, Chilkoti A, Chu V, Penzotti JE, To R, Hyre D, Le Trong I, Lybrand TP, Stenkamp RE. 1999. Streptavidin-biotin binding energetics. Biomol. Eng. 16(1–4): 39–44.
- Sulchek TA, Friddle RW, Langry K, Lau EY, Albrecht H, Ratto TV, DeNardo SJ, Colvin ME, Noy A. 2005. Dynamic force spectroscopy of parallel individual mucin1-antibody bonds. Proc. Nat. Acad. Sci. USA 102(46): 16638–16643.
- Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. 1989. Structural origins of high-affinity biotin binding to streptavidin. Science 243(4887): 85–88.
- Weber PC, Wendoloski JJ, Pantoliano MW, Salemme FR. 1992. Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. J. Am. Chem. Soc. 114(9): 3197–3200.
- Weber PC, Pantoliano MW, Salemme FR. 1995. Crystallographic and thermodynamic comparison of structurally diverse molecules binding to streptavidin. Acta Crystallogr. D Biol. Crystallogr. 51: 590–596.
- Wojcikiewicz EP, Abdulreda MH, Zhang X, Moy VT. 2006. Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules 7(11): 3188–3195.
- Wang J, Chilkoti A, Moy VT. (1999). Direct force measurements of the streptavidin-biotin interaction. Biomolecular Engneering 16(1–4): 45–55.
- Young T, Abel R, Kim B, Berne BJ, Friesner RA. 2007. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. USA 104(3): 808–813.
- Yuan C, Chen A, Kolb P, Moy VT. 2000. Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39(33): 10219–10223.
- Zhang XH, Bogorin DF, Moy VT. 2004. Molecular basis of the dynamic strength of the sialyl Lewis X-selectin interaction. Chemphyschem 5(2): 175–182.
- Zhang XH, Craig SE, Kirby H, Humphries MJ, Moy VT. 2004. Molecular basis for the dynamic strength of the integrin alpha(4)beta(1)/VCAM-1 interaction. Biophys. J. 87(5): 3470–3478.
- Zhou J, Zhang LZ, Leng YS, Tsao HK, Sheng YJ, Jiang SY. 2006. Unbinding of the streptavidin-biotin complex by atomic force microscopy: a hybrid simulation study. J. Chem. Phys. 125(10): 104905.
- Zwanzig R. 1988. Diffusion in a rough potential. Proc. Natl. Acad. Sci. USA 85(7): 2029–2030.