Finding any given 2-factor in sparse pseudorandom graphs efficiently
Corresponding Author
Jie Han
Department of Mathematics, University of Rhode Island, Kingston, Rhode Island
Correspondence Jie Han, Department of Mathematics, University of Rhode Island, 5 Lippitt Road, Kingston, RI 02881.
Email: [email protected]
Search for more papers by this authorYoshiharu Kohayakawa
Instituto de Matemáticae Estatística, Universidade de São Paulo, São Paulo, Brazil
Search for more papers by this authorPatrick Morris
Institut für Mathematik, Freie Universität Berlin, Berlin, Germany
Berlin Mathematical School, Berlin, Germany
Search for more papers by this authorYury Person
Institut für Mathematik, Technische Universität, Ilmenau, Germany
Search for more papers by this authorCorresponding Author
Jie Han
Department of Mathematics, University of Rhode Island, Kingston, Rhode Island
Correspondence Jie Han, Department of Mathematics, University of Rhode Island, 5 Lippitt Road, Kingston, RI 02881.
Email: [email protected]
Search for more papers by this authorYoshiharu Kohayakawa
Instituto de Matemáticae Estatística, Universidade de São Paulo, São Paulo, Brazil
Search for more papers by this authorPatrick Morris
Institut für Mathematik, Freie Universität Berlin, Berlin, Germany
Berlin Mathematical School, Berlin, Germany
Search for more papers by this authorYury Person
Institut für Mathematik, Technische Universität, Ilmenau, Germany
Search for more papers by this authorAbstract
Given an -vertex pseudorandom graph and an -vertex graph with maximum degree at most two, we wish to find a copy of in , that is, an embedding so that for all . Particular instances of this problem include finding a triangle-factor and finding a Hamilton cycle in . Here, we provide a deterministic polynomial time algorithm that finds a given in any suitably pseudorandom graph . The pseudorandom graphs we consider are -bijumbled graphs of minimum degree which is a constant proportion of the average degree, that is, . A -bijumbled graph is characterised through the discrepancy property: for any two sets of vertices and . Our condition on bijumbledness is within a log factor from being tight and provides a positive answer to a recent question of Nenadov. We combine novel variants of the absorption-reservoir method, a powerful tool from extremal graph theory and random graphs. Our approach builds on our previous work, incorporating the work of Nenadov, together with additional ideas and simplifications.
REFERENCES
- 1P. Allen, J. Böttcher, H. Hàn, Y. Kohayakawa, and Y. Person. Blow-up lemmas for sparse graphs. 2016.
- 2P. Allen, J. Böttcher, H. Hàn, Y. Kohayakawa, and Y. Person, Powers of Hamilton cycles in pseudorandom graphs, Combinatorica 37 (2017), no. 4, 573–616.
- 3P. Allen, J. Böttcher, Y. Kohayakawa, and Y. Person, Tight Hamilton cycles in random hypergraphs, Random Struct. Algorithms 46 (2015), no. 3, 446–465.
- 4N. Alon, Explicit Ramsey graphs and orthonormal labelings, Electron. J. Combin. 1 (1994) R12, 8 pp.
10.37236/1192 Google Scholar
- 5N. Alon, Tough ramsey graphs without short cycles, J. Algebr. Comb. 4 (1995), no. 3, 189–195.
- 6N. Alon, Universality, tolerance, chaos and order, An irregular mind. Szemerédi is 70. Dedicated to Endre Szemerédi on the occasion of his seventieth birthday, Springer, Berlin, 2010, pp. 21–37.
10.1007/978-3-642-14444-8_1 Google Scholar
- 7N. Alon and M. Capalbo, Sparse universal graphs for bounded-degree graphs, Random Struct. Algorithms. 31 (2007), no. 2, 123–133.
- 8N. Alon, and M. Capalbo, Optimal universal graphs with deterministic embedding, Proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms (SODA 2008), San Francisco, CA, January 20–22, 2008, Association for Computing Machinery (ACM); Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), New York, NY, 2008, pp. 373–378.
- 9N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński, and E. Szemerédi. Universality and tolerance. Proc 41st IEEE FOCS, 2000, pp. 14–21.
- 10N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński, and E. Szemerédi, Near-optimum universal graphs for graphs with bounded degrees (extended abstract), Approximation, randomization, and combinatorial optimization (Berkeley, CA, 2001), volume 2129 of Lecture Notes in Comput. Sci., Springer, Berlin, 2001, pp. 170–180.
10.1007/3-540-44666-4_20 Google Scholar
- 11N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Disc. Math. 72 (1988), no. 1–3, 15–19.
- 12N. Alon and N. Kahale, Approximating the independence number via the -function, Math. Prog. 80 (1998), no. 3, 253–264.
- 13N. Alon and J. H. Spencer, The probabilistic method, 4th ed., Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2016.
- 14J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Comb. Theory, Ser. B. 16 (1974), 97–105.
10.1016/0095-8956(74)90052-5 Google Scholar
- 15F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), no. 4, 345–362.
- 16V. Chvátal, Tough graphs and Hamiltonian circuits, Disc. Math. 5 (1973), no. 3, 215–228.
10.1016/0012-365X(73)90138-6 Google Scholar
- 17D. Conlon, A sequence of triangle-free pseudorandom graphs, Combin. Probab. Comput. 26 (2017), no. 2, 195–200.
- 18D. Conlon, A. Ferber, R. Nenadov, and N. Škorić, Almost-spanning universality in random graphs, Random Struct. Algorithms 50 (2017), no. 3, 380–393.
- 19D. Conlon, J. Fox, and Y. Zhao, Extremal results in sparse pseudorandom graphs, Adv. Math. 256 (2014), 206–290.
- 20D. Dellamonica Jr., Y. Kohayakawa, V. Rödl, and A. Ruciński, An improved upper bound on the density of universal random graphs, LATIN 2012: Theoretical informatics, Springer, 2012, pp. 231–242.
10.1007/978-3-642-29344-3_20 Google Scholar
- 21G. Fan and H. A. Kierstead, Hamiltonian square-paths, J. Comb. Theory, Ser. B. 67 (1996), no. 2, 167–182.
- 22A. Ferber, G. Kronenberg, and K. Luh, Optimal threshold for a random graph to be 2-universal, Trans. Am. Math. Soc. 372 (2019), no. 6, 4239–4262.
- 23A. Ferber and R. Nenadov, Spanning universality in random graphs, Random Struct. Algorithms 53 (2018), no. 4, 604–637.
- 24J. Han, Y. Kohayakawa, P. Morris, and Y. Person, Clique-factors in sparse pseudorandom graphs, European J. Comb. 82 (2019), 102999.
- 25J. Han, Y. Kohayakawa, and Y. Person. Near-optimal clique-factors in sparse pseudorandom graphs. arXiv:1806.00493, submitted.
- 26J. Han, Y. Kohayakawa, and Y. Person, Near-perfect clique-factors in sparse pseudorandom graphs, Discrete mathematics days 2018. Extended abstracts of the 11th “Jornadas de matemática discreta y algorı́tmica” (JMDA), Sevilla, Spain, June 27–29, 2018, Elsevier, Amsterdam, 2018, pp. 221–226.
- 27S. Hoory, N. Linial, and A. Widgerson, Expander graphs and their applications, Bull. Am. Math. Soc., New Ser. 43 (2006), no. 4, 439–561.
- 28R. M. Karp, Reducibility among combinatorial problems, Complexity of computer computations ( R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, eds.), Springer, Boston, MA, 1972, pp. 85–103.
10.1007/978-1-4684-2001-2_9 Google Scholar
- 29J. H. Kim and S. J. Lee, Universality of random graphs for graphs of maximum degree two, SIAM J. Disc. Math. 28 (2014), no. 3, 1467–1478.
- 30D. G. Kirkpatrick and P. Hell, On the complexity of general graph factor problems, SIAM J. Comp. 12 (1983), no. 3, 601–609.
- 31Y. Kohayakawa, V. e. Rödl, M. Schacht, P. Sissokho, and J. Skokan, Turán's theorem for pseudo-random graphs, J. Combin. Theory Ser. A. 114 (2007), no. 4, 631–657.
- 32J. Komlós, G. N. Sárközy, and E. Szemerédi, Blow-up lemma, Combinatorica 17 (1997), no. 1, 109–123.
- 33J. Komlós, G. N. Sárközy, and E. Szemerédi, An algorithmic version of the blow-up lemma, Random Struct. Algorithms 12 (1998), no. 3, 297–312.
- 34J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, The regularity lemma and its applications in graph theory, Theoretical aspects of computer science. Advanced lectures, Springer, Berlin, 2002, pp. 84–112.
10.1007/3-540-45878-6_3 Google Scholar
- 35S. Kopparty. Cayley graphs (lecture notes), 2011, available at http://sites.math.rutgers.edu/~sk1233/courses/graphtheory-F11/cayley.pdf
- 36M. Krivelevich and B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, J. Graph Theory. 42 (2003), no. 1, 17–33.
- 37M. Krivelevich and B. Sudakov, Pseudo-random graphs, More sets, graphs and numbers, volume 15 of Bolyai Soc. Math. Stud., Springer, Berlin, 2006, pp. 199–262.
10.1007/978-3-540-32439-3_10 Google Scholar
- 38M. Krivelevich, B. Sudakov, and T. Szabó, Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403–426.
- 39D. Kühn and D. Osthus, On Pósa's conjecture for random graphs, SIAM J. Disc. Math. 26 (2012), no. 3, 1440–1457.
- 40M. Kwan. Almost all Steiner triple systems have perfect matchings. 2016.
- 41A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261–277.
- 42R. Montgomery. Embedding bounded degree spanning trees in random graphs. 2014.
- 43R. Montgomery, Spanning trees in random graphs, Adv. Math. 356 (2019), 106793.
- 44R. Nenadov, Triangle-factors in pseudorandom graphs, Bull. London Math. Soc. 51 (2019), no. 3, 421–430.
- 45R. Nenadov and Y. Pehova. On a Ramsey-Turán variant of the Hajnal-Szemerédi theorem. arXiv preprint arXiv:1806.03530, 2018.
- 46V. Rödl, A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), no. 1-2, 229–251.
- 47V. Rödl, A. Ruciński, and E. Szemerédi, An approximate Dirac-type theorem for -uniform hypergraphs, Combinatorica 28 (2008), no. 2, 229–260.
- 48A. Thomason, Pseudorandom graphs, Random graphs' 85 (Poznań, 1985), volume 144 of North-Holland Math. Stud., North-Holland, Amsterdam, 1987, pp. 307–331.
- 49A. Thomason, Random graphs, strongly regular graphs and pseudorandom graphs, Surveys in combinatorics 1987 (New Cross, 1987), volume 123 of London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge, 1987, pp. 173–195.
- 50A. Walfisz, Zur additiven Zahlentheorie. II, Math. Zeitschrift. 40 (1936), no. 1, 592–607.
10.1007/BF01218882 Google Scholar