All-atom de novo protein folding with a scalable evolutionary algorithm
Abhinav Verma
Institute for Scientific Computing, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Search for more papers by this authorSrinivasa M. Gopal
Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Search for more papers by this authorJung S. Oh
Supercomputational Materials Lab, Korean Institute for Science and Technology, Seoul, Korea
Search for more papers by this authorKyu H. Lee
Supercomputational Materials Lab, Korean Institute for Science and Technology, Seoul, Korea
Search for more papers by this authorCorresponding Author
Wolfgang Wenzel
Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, GermanySearch for more papers by this authorAbhinav Verma
Institute for Scientific Computing, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Search for more papers by this authorSrinivasa M. Gopal
Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Search for more papers by this authorJung S. Oh
Supercomputational Materials Lab, Korean Institute for Science and Technology, Seoul, Korea
Search for more papers by this authorKyu H. Lee
Supercomputational Materials Lab, Korean Institute for Science and Technology, Seoul, Korea
Search for more papers by this authorCorresponding Author
Wolfgang Wenzel
Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, GermanySearch for more papers by this authorAbstract
The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 Å in <24 h. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007
References
- 1 Daura, X.; Juan, B.; Seebach, D.; van Gunsteren, W. F.; Mark, A. E. J Mol Biol 280, 925, 1998.
- 2 Snow, C. D.; Nguyen, H.; Pande, V. S.; Gruebele, M. Nature 2002, 420, 102.
- 3 Simmerling, C.; Strockbine, B.; Roitberg, A. J Am Chem Soc 2002, 124, 11258.
- 4 Pitera, J.; Swope, W. Proc Natl Acad Sci USA 2003, 100, 7587.
- 5 Yang, W. Y.; Pitera, J. W.; Swope, W. C.; Gruebele, M. J Mol Biol 2004, 336, 241.
- 6 Chen, J.; Im, W.; Brooks, C. L.,III. J Am Chem Soc 2006, 128, 3728.
- 7 Lazaridis, T.; Karplus, M. Science 1997, 278, 1928.
- 8 Garcia, A. E.; Onuchic, N. Proc Natl Acad Sci USA 2003, 100, 13898.
- 9 Mayor, U.; Guydosh, N. R.; Johnson, C. M.; Grossmann, J. G.; Sato, S.; Jas, G. S.; Freund, S. M. V.; Alonso, D. O. V.; Daggett, V.; Fersht, A. R. Nature 2003, 421, 863.
- 10 Andrec, M.; Felts, A. K.; Gallicchio, E.; Levy, R. M. Proc Natl Acad Sci USA 2005, 102, 6801.
- 11 Herges, T.; Wenzel, W. Biophys J 2004, 87, 3100.
- 12 Schug, A.; Verma, A.; Herges, T.; Lee, K. H.; Wenzel, W. Chem Phys Chem 2005, 6, 2640.
- 13 Verma, A.; Schug, A.; Lee, K. H.; Wenzel, W. J Chem Phys 2006, 124, 044515.
- 14 Anfinsen, C. B. Science 1973, 181, 223.
- 15 Herges, T.; Wenzel, W. Phys Rev Lett 2005, 94, 018101.
- 16 Hansmann, U. H. E. J Chem Phys 2004, 120, 417.
- 17 Schug, A.; Herges, T.; Wenzel, W. Proteins 2004, 57, 792.
- 18
Schug, A.;
Herges, T.;
Verma, A.;
Wenzel, W.
J Phys Condens Matter
2005,
17,
1641.
10.1088/0953-8984/17/18/019 Google Scholar
- 19 Garcia, A.; Onuchic, J. Structure 2005, 13, 497.
- 20 Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220, 671.
- 21 Wenzel, W.; Hamacher, K. Phys Rev Lett 1999, 82, 3003.
- 22 Derreumaux, P. J Chem Phys 1997, 106, 5260.
- 23 Abagyan, R. A.; Totrov, M. J Comp Phys 1999, 151, 402.
- 24 Levinthal, C. J Chim Phys 1968, 65, 44.
- 25 Li, Z.; Scheraga, H. A. Proc Natl Acad Sci USA 1987, 84, 6611.
- 26
Leitner, D. M.;
Chakravarty, C.;
Hinde, R. J.;
Wales, D. J.
Phys Rev E
1997,
56,
363.
10.1103/PhysRevE.56.4890 Google Scholar
- 27
Mortenson, P. N.;
Wales, D. J.
J Chem Phys
2004,
114,
6443.
10.1063/1.1343486 Google Scholar
- 28 Mortenson, P. N.; Evans, D. A.; Wales, D. J. J Chem Phys 2002, 117, 1363.
- 29 Wales, D. J.; Dewbury, P. E. J. J Chem Phys 2004, 121, 10284.
- 30 Schug, A.; Wenzel, W. J Am Chem Soc 2004, 126, 16736.
- 31 Schug, A.; Wenzel, W. Biophys J 2006, 90, 4273.
- 32 Schug, A.; Herges, T.; Wenzel, W. Phys Rev Lett 2003, 91, 158102.
- 33 Herges, T.; Wenzel, W. Structure 2005, 13, 661.
- 34 Herges, T.; Merlitz, H.; Wenzel, W. J Ass Lab Autom 2002, 7, 98.
- 35 Abagyan, R. A.; Totrov, M. J Mol Biol 1994, 235, 983.
- 36 Herges, T.; Schug, A.; Wenzel, W. Int J Quant Chem 2004, 99, 854.
- 37 Avbelj, F.; Moult, J. Biochemistry 1995, 34, 755.
- 38 Eisenberg, D.; McLachlan, A. D. Nature 1986, 319, 199.
- 39 Sharp, K. A.; Nicholls, A.; Friedman, R.; Honig, B. Biochemistry 1991, 30, 9686.
- 40 Pedersen, J. T.; Moult, J. J Molec Biol 1997, 269, 240.
- 41 Carr, J. M.; Wales, D. J. J Chem Phys 2005, 123, 234901.
- 42 Nayeem, A.; Vila, J.; Scheraga, H. A. J Comp Chem 1991, 12, 594.
- 43 Withers-Ward, E. S.; Mueller, T. D.; Chen, I. S.; Feigon, J. Biochemistry 2000, 39, 14103.
- 44 Onuchic, J. N.; Luthey-Schulten, Z.; Wolynes, P. G. Annu Rev Phys Chem 1997, 48, 545.
- 45 Dill, K. A.; Chan, H. S. Nat Struct Biol 1997, 4, 10.
- 46 Becker, O. M.; Karplus, M. J Chem Phys 1997, 106, 1495.
- 47 Plaxco, K. W.; Baker, D. Proc Natl Acad Sci USA 1998, 95, 13591.
- 48 Zagrovic, B.; Pande, V. J Comput Chem 2003, 24, 1432.
- 49
Qiu, L.;
Hagen, S. J.
Chem Phys
2005,
312,
327.
10.1016/j.chemphys.2004.12.002 Google Scholar
- 50 Duan, Y.; Kollman, P. A. Science 1998, 282, 740.