The synthesis of N-benzoylindoles as inhibitors of rat erythrocyte glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase
Corresponding Author
Sinan Bayindir
Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
Correspondence
Sinan Bayindir
E-mail: [email protected]
Search for more papers by this authorYusuf Temel
Department of Health Services, Vocational Schools, Bingol University, 12000 Bingol, Turkey
Search for more papers by this authorAdnan Ayna
Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
Search for more papers by this authorMehmet Ciftci
Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
Search for more papers by this authorCorresponding Author
Sinan Bayindir
Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
Correspondence
Sinan Bayindir
E-mail: [email protected]
Search for more papers by this authorYusuf Temel
Department of Health Services, Vocational Schools, Bingol University, 12000 Bingol, Turkey
Search for more papers by this authorAdnan Ayna
Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
Search for more papers by this authorMehmet Ciftci
Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
Search for more papers by this authorAbstract
Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) play an important function in various biochemical processes as they generate reducing power of the cell. Thus, metabolic reprogramming of reduced nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis is reported to be a vital step in cancer progression as well as in combinational therapeutic approaches. In this study, N-benzoylindoles 9a--9d, which form the main framework of many natural indole derivatives such as indomethacin and N-benzoylindoylbarbituric acid, were synthesized through three easy and effective steps as an in vitro inhibitor effect of G6PD and 6PGD. The N-benzoylindoles inhibited the enzymatic activity with IC50 in the range of 3.391505 μM for G6PD and 2.19–990 μM for 6PGD.
Supporting Information
Filename | Description |
---|---|
jbt22193-sup-0001-SuppMat.doc12.1 MB | Figure S1. 1H NMR (400 MHz) spectra of 1-(2-nitro-1-phenylethyl) indoline (7a) Figure S2. 13C NMR (100 MHz) spectra of 1-(2-nitro-1-phenylethyl)indoline (7a) Figure S3. 1H NMR (400 MHz) spectra of 1-(2-nitro-1-phenylethyl)-1H-indole (8a) Figure S4. APT 13C NMR (100 MHz) spectra of 1-(2-nitro-1-phenylethyl)-1H-indole (8a) Figure S5. 1H NMR (400 MHz) spectra of 1-(2-nitro-1-(2-nitrophenyl) ethyl) indoline (7e) Figure S6. APT 13C NMR (100 MHz) spectra of 1-(2-nitro-1-(2-nitrophenyl)ethyl)indoline (7e) Figure S7. 1H NMR (400 MHz) spectra of 1-(1-(4-chlorophenyl)-2-nitroethyl)-1H-indole (8b) Figure S8. 13C NMR (100 MHz) spectra of 1-(1-(4-chlorophenyl)-2-nitroethyl)-1H-indole (8b) Figure S9. 1H NMR (400 MHz) spectra of 1-(1-(furan-2-yl)-2-nitroethyl)-1H-indole (8c) Figure S10. 13C NMR (100 MHz) spectra of 1-(1-(furan-2-yl)-2-nitroethyl)-1H-indole (8c) Figure S11. 1H NMR (400 MHz) spectra of 1-(2-nitro-1-(thiophen-2-yl)ethyl)-1H-indole (8d) Figure S12. 13C NMR (100 MHz) spectra of 1-(2-nitro-1-(thiophen-2-yl)ethyl)-1H-indole (8d) Figure S13. 1H NMR (400 MHz) spectra of (1H-indol-1-yl)(phenyl)methanone (9a) Figure S14. 13C NMR (100 MHz) spectra of (1H-indol-1-yl)(phenyl)methanone (9a) Figure S15. 1H NMR (400 MHz) spectra of (4-chlorophenyl)(1H-indol-1-yl)methanone (9b) Figure S16. APT 13C NMR (100 MHz) spectra of (4-chlorophenyl)(1H-indol-1-yl)methanone (9b) Figure S17. 1H NMR (400 MHz) spectra of furan-2-yl(1H-indol-1-yl)methanone (9c) Figure S18. APT 13C NMR (100 MHz) spectra of furan-2-yl(1H-indol-1-yl)methanone (9c) Figure S19. 1H NMR (400 MHz) spectra of (1H-indol-1-yl)(thiophen-2-yl)methanone (9d) Figure S20. APT 13C NMR (100 MHz) spectra of (1H-indol-1-yl)(thiophen-2-yl)methanone (9d) Figure S21. In vitro effect of 8a (a), 8b (b), and 8c (c) on rat erythrocyte G6PD with corresponding IC50 graphs. Figure S22. a) In vitro effect of 8d on rat erythrocyte G6PD with corresponding IC50 graph and b) Lineweaver–Burk double reciprocal plot of initial velocity against G6PD and inhibitor 8d at different concentrations. Figure S23. a) In vitro effect of 9a on rat erythrocyte G6PD with corresponding IC50 graph and b) Lineweaver–Burk double reciprocal plot of initial velocity against G6PD and inhibitor 9a at different concentrations Figure S24. a) In vitro effect of 9b on rat erythrocyte G6PD with corresponding IC50 graph and b) Lineweaver–Burk double reciprocal plot of initial velocity against G6PD and inhibitor 9b at different concentrations. Figure S25. a) In vitro effect of 9c on rat erythrocyte G6PD with corresponding IC50 graph and b) Lineweaver–Burk double reciprocal plot of initial velocity against G6PD and inhibitor 9c at different concentrations. Figure S26. a) In vitro effect of 9d on rat erythrocyte G6PD with corresponding IC50 graph and b) Lineweaver–Burk double reciprocal plot of initial velocity against G6PD and inhibitor 9d at different concentrations. Figure S27. In vitro effect of 8a (a), 8b (b), and 8c (c) on rat erythrocyte 6PGD with corresponding IC50 graphs. Figure S28. In vitro effect of 8d (a), 9a (b), and 9b (c) on rat erythrocyte 6PGD with corresponding IC50 graphs. Figure S29. In vitro effect of 9c (a), and 9d (b) on rat erythrocyte 6PGD with corresponding IC50 graphs Figure S30. 1H NMR (400 MHz) spectra of (E or Z) 1-(2-nitro-1-phenylvinyl)-1H-indole (11) and 9a, obtained the 6PGD-catalyst reaction of 1-(2-nitro-1-phenylethyl)-1H-indole (8a) with NADP. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1L. Kun, M. B. Regina, J. A. John, M. Ralph D. Sheryl, A. Ramon, Y. Meng, T. G. Richard, C. Lawrence, L. Cherrie et al., Bioorg. Med. Chem. Lett. 2005, 15, 2437.
- 2R. P. Narsimha, R. P. Purushothama, K. Vinod, A. C. Peter, Bioorg. Med. Chem. Lett. 2013, 23, 1442.
- 3W. M. Dai, D. S. Guo, l. P. Sun, Tetrahedron Lett. 2001, 42, 5275.
- 4P. Franck, B. Eckhard, R. Wolfgang, W. H. Rolf, Bioorg. Med. Chem. 2000, 8, 1479.
- 5W. Jingsong, L. Nhut, H. Alonso, S. Haijing, R. Robert, L. X. Wang, Org. Biomol. Chem. 2005, 3, 1781.
- 6X. F. Wu, S. Oschatz, M. Sharif, P. Langer, Synthesis 2015, 47, 2641.
- 7D. S. Dhanoa, S. W. Bagley, R. S. L. Chang, V. J. Lotti, T. B. Chen, S. D. Kivlighn, G. J. Zingaro, P. K. S. Siegl, A. A. Patchett, W. J. Greenleet, J. Med. Chem. 1993, 36, 4230.
- 8J. Kaur, A. Bhardwaj, Z. Huang, E. E. Knaus, Bioorg. Med. Chem. Lett. 2012, 22, 2154.
- 9M. Kim, N. K. Mishra, J. Park, S. Han, Y. Shin, S. Sharma, Y. Lee, E. K. Lee, J. H. Kwak, I. S. Kim, Chem. Commun. 2014, 50, 14249.
- 10B. E. Maki, K. A. Scheldt, Org. Lett. 2009, 11, 1651.
- 11Z. Song, R. Samanta, A. P. Antonchick, Org. Lett. 2013, 15, 5662.
- 12H. Kilic, S. Bayindir, E. Erdogan, C. S. Agopcan, F. A. S. Konuklar, S. K. Bali, N. Saracoglu, V. Aviyente, New J. Chem. 2017, 41, 9674.
- 13S. Bayindir, A. Ayna, Y. Temel, M. Ciftci, Turk J. Chem. 2018, 42, 332. https://doi.org/10.3906/kim-1706-51.
- 14H. Kilic, S. Bayindir, N. Saracoglu, Curr. Org. Chem. 2014, 11, 167.
- 15S. Bayindir, N. Saracoglu, RSC Adv. 2016, 6, 72959.
- 16S. Bayindir, E. Erdogan, H. Kilic, N. Saracoglu, Synlett 2010, 10, 1455.
- 17H. Kilic, S. Bayindir, E. Erdogan, N. Saracoglu, Tetrahedron 2012, 68, 5619.
- 18S. Bayindir, E. Erdogan, H. Kilic, O. Aydin, N. Saracoglu, J. Heterocyclic Chem. 2015, 52, 1589.
- 19O. Aydin, H. Kilic, S. Bayindir, E. Erdogan, N. Saracoglu, J. Heterocyclic Chem. 2016, 52, 1540.
- 20H. Kilic, O. Aydin, S. Bayindir, N. Saracoglu, J. Heterocyclic Chem. 2016, 53 6, 2096.
- 21R.C. Stanton, IUBMB Life. 2012, 64, 362.
- 22H.A. Krebs, L.V. Eggleston, Advances in Enzyme Regulation. Oxford: Pergamon Press Ltd. 1978, 12, 421.
- 23M.D. Cappellini, G. Fiorelli, Lancet. 2008, 371, 64.
- 24M.D.E. Beutler, Academic press. 1971, 68.
- 25C. Zhang, Z. Zhang, Y. Zhu, S. Qin, Anticancer Agents Med Chem. 2014, 14, 280.
- 26J. Park, H.K. Rho, K.H. Kim, S.S. Choe, Y.S. Lee, J.B. Kim, Mol. Cell Biol. 2004, 25, 5146.
- 27J. Park, S.S. Choe, A.H. Choi, K.H. Kim, M.J. Yoon, T. Suganami, Y. Ogawa, J.B. Kim, Diabetes 2006, 55, 2939.
- 28S.A. Gupte, Curr. Opin. Investig. Drugs. 2008, 9, 993.
- 29S. Jalal, S. Sarkar, K. Bera, S. Maiti, U. Jana, Eur. J. Org. Chem. 2013, 22, 4823.
- 30Q. Han, S. Fu, X. Zhang, S. Lin, Q. Huang, Tetrahedron Lett. 2016, 57, 4165.
- 31M. Terashima, M. Fujioka, Heterocycles 1982, 19, 91.
- 32Y. Temel, U. M. Kocyigit, J. Biochem Mol Toxicol. 2017, 31, 21927.
- 33L. A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass, M.J. E. Sternberg, Nat. Protoc. 2015, 10, 845.
- 34W.N.S. Au, G. Sheila, M.S. Veronica, M. Lam, J. Adams, Structures 2000, 8, 293.
- 35A.T. Ranzani, A.T. Cordeiro, FEBS Lett. 2017, 591, 1278.
- 36M.S. Cosgrove, C. Naylor, S. Paludan, M.J. Adams, H.R Levy, Biochemistry 1998, 37, 2759.
- 37E.S. Cho, Y.H. Cha, H.S. Kim, N.H. Kim, J.I Yook, Biomol Ther. 2018, 26, 29.
- 38A. Akıncıoglu, H. Akıncıoglu, I. Gülçin, S. Durdagı, C. T. Supuran, S. Göksu, Bioorg. Med. Chem. 2015, 23, 3592.
- 39K. Aksu, M. Nar, M. Tanç, D. Vullo, I. Gülçin, S. Göksu, F. Tümer, C. T. Supuran, Bioorg. Med. Chem. 2013, 21, 2925.