Biomechanical characterization of a novel collagen-hyaluronan infused 3D-printed polymeric device for partial meniscus replacement
Salim A. Ghodbane
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorJay M. Patel
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorAndrzej Brzezinski
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorTyler M. Lu
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorCharles J. Gatt
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorCorresponding Author
Michael G. Dunn
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Correspondence to: M. G. Dunn; e-mail: [email protected]Search for more papers by this authorSalim A. Ghodbane
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorJay M. Patel
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorAndrzej Brzezinski
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorTyler M. Lu
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Search for more papers by this authorCharles J. Gatt
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Search for more papers by this authorCorresponding Author
Michael G. Dunn
Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
Correspondence to: M. G. Dunn; e-mail: [email protected]Search for more papers by this authorAbstract
The menisci transmit load by increasing the contact area and decreasing peak contact stresses on the articular surfaces. Meniscal lesions are among the most common orthopedic injuries, and resulting meniscectomies are associated with adverse polycaprolactone contact mechanics changes and, ultimately, an increased likelihood of osteoarthritis. Meniscus scaffolds were fabricated by 3D-printing a network of circumferential and radial filaments of resorbable polymer (poly(desaminotyrosyl-tyrosine dodecyl ester dodecanoate)) and infused with collagen-hyaluronan. The scaffold demonstrated an instantaneous compressive modulus (1.66 ± 0.44 MPa) comparable to native meniscus (1.52 ± 0.59 MPa). The scaffold aggregate modulus (1.33 ± 0.51 MPa) was within 2% of the native value (1.31 ± 0.36 MPa). In tension, the scaffold displayed a comparable stiffness to native tissue (127.6–97.1 N/mm) and an ultimate load of 33% of the native value. Suture pull-out load of scaffolds (83.1 ± 10.0 N) was within 10% of native values (91.5 ± 15.4 N). Contact stress analysis demonstrated the scaffold reduced peak contact stress by 60–67% and increased contact area by 38%, relative to partial meniscectomy. This is the first meniscal scaffold to match both the axial compressive properties and the circumferential tensile stiffness of the native meniscus. The improvement of joint contact mechanics, relative to partial meniscectomy alone, motivates further investigation using a large animal model. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2457–2465, 2019.
REFERENCES
- 1Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011; 32(30): 7411–7431.
- 2Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 1990; 252: 19–31.
- 3Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints-Part I: Tibial surface of the knee. J Biomech Eng 1983; 105(3): 216–225.
- 4Shaffer B, Kennedy S, Klimkiewicz J, Yao L. Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med 2000; 28(4): 524–533.
- 5Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci: Structure, composition, and function. Sports Health 2012; 4(4): 340–351.
- 6Sihvonen R, Paavola M, Malmivaara A, Itala A, Joukainen A, Nurmi H, Kalske J, Jarvinen TL, Finnish Degenerative Meniscal Lesion Study Group. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med 2013; 369(26): 2515–2524.
- 7Northmore-Ball MD, Dandy DJ, Jackson RW. Arthroscopic, open partial, and total meniscectomy. A comparative study. J Bone Joint Surg (Br) 1983; 65(4): 400–404.
- 8Papalia R, Del Buono A, Osti L, Denaro V, Maffulli N. Meniscectomy as a risk factor for knee osteoarthritis: A systematic review. Br Med Bull 2011; 99(1): 89–106.
- 9Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J, Kang RW, Cole BJ. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 2006; 34(8): 1334–1344.
- 10Fisher SR, Markel DC, Koman JD, Atkinson TS. Pull-out and shear failure strengths of arthroscopic meniscal repair systems. Knee Surg Sports Traumatol Arthrosc 2002; 10(5): 294–299.
- 11Noyes FR, Barber-Westin SD. Long-term survivorship and function of meniscus transplantation. Am J Sports Med 2016; 44(9): 2330–2338.
- 12 Department of Health & Human Services (DHHS). Change Request 6903. Baltimore, MD: Centers for Medicare & Medicaid Services; 2010.
- 13Van Der Straeten C, Doyen B, Dutordoir C, Goedertier W, Pirard S, Victor J. Short- and medium-term results of artificial meniscal implants. Orthopaed Proc 2016; 98-B(SUPP 4): 91–91.
- 14Puetzer JL, Bonassar LJ. High density type I collagen gels for tissue engineering of whole menisci. Acta Biomater 2013; 9(8): 7787–7795.
- 15Gruchenberg K, Ignatius A, Friemert B, von Lubken F, Skaer N, Gellynck K, Kessler O, Durselen L. In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surg Sports Traumatol Arthrosc 2015; 23(8): 2218–2229.
- 16Koller U, Nehrer S, Vavken P, Kapeller B, Windhager R, Chiari C. Polyethylene terephthalate (PET) enhances chondrogenic differentiation of ovine meniscocytes in a hyaluronic acid/polycaprolactone scaffold in vitro. Int Orthop 2012; 36(9): 1953–1960.
- 17Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, Rosenblatt L, Deng XH, Turner AS, Wright TM, Warren RF. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy 2010; 26(11): 1510–1519.
- 18Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, Hershman EB, Arnoczky SP, Guilak F, Shterling A. Chondroprotective effects of a polycarbonate-urethane meniscal implant: Histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc 2011; 19(2): 255–263.
- 19Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med 2014; 6(266): 266ra171.
- 20Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Marchesini Reggiani L, Chiari C, Nehrer S, Martin I, Salter DM, Ambrosio L, Marcacci M. Tissue engineering for total meniscal substitution: Animal study in sheep model--Results at 12 months. Tissue Eng Part A 2012; 18(15–16): 1573–1582.
- 21Patel JM, Merriam AR, Kohn J, Gatt CJ Jr, Dunn MG. Negative outcomes of poly(l-lactic acid) fiber-reinforced scaffolds in an ovine total meniscus replacement model. Tissue Eng Part A 2016; 22(17–18): 1116–1125.
- 22Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 2010; 6(12): 4716–4724.
- 23Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26(15): 2603–2610.
- 24Sarkar S, Lee GY, Wong JY, Desai TA. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials 2006; 27(27): 4775–4782.
- 25Xie J, Li X, Lipner J, Manning CN, Schwartz AG, Thomopoulos S, Xia Y. "Aligned-to-random" nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale 2010; 2(6): 923–926.
- 26Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005; 26(11): 1261–1270.
- 27Teh TKH, Toh SL, Goh JCH. Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts. Tissue Eng Part C Methods 2011; 17(6): 687–703.
- 28Balint E, Gatt CJ Jr, Dunn MG. Design and mechanical evaluation of a novel fiber-reinforced scaffold for meniscus replacement. J Biomed Mater Res A 2012; 100(1): 195–202.
- 29Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 2007; 28(11): 1967–1977.
- 30Warren PB, Huebner P, Spang JT, Shirwaiker RA, Fisher MB. Engineering 3D-bioplotted scaffolds to induce aligned extracellular matrix deposition for musculoskeletal soft tissue replacement. Connect Tissue Res 2016; 58: 1–13.
- 31Brophy RH, Cottrell J, Rodeo SA, Wright TM, Warren RF, Maher SA. Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. J Biomed Mater Res A 2010; 92(3): 1154–1161.
- 32Merriam AR, Patel JM, Culp BM, Gatt CJ, Dunn MG. Successful total meniscus reconstruction using a novel fiber-reinforced scaffold: A 16-and 32-week study in an ovine model. Am J Sports Med 2015; 43(10): 2528–2537.
- 33Patel JM, Merriam AR, Culp BM, Gatt Jr CJ, Dunn MG. One-year outcomes of total meniscus reconstruction using a novel fiber-reinforced scaffold in an ovine model. Am J Sports Med 2016; 44(4): 898–907.
- 34Patel JM, Ghodbane SA, Brzezinski A, Gatt CJ Jr, Dunn MG. Tissue-engineered total meniscus replacement with a fiber-reinforced scaffold in a 2-year ovine model. Am J Sports Med 2018; 46(8): 1844–1856.
- 35Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P. Biomaterials in search of a meniscus substitute. Biomaterials 2014; 35(11): 3527–3540.
- 36Bedi A, Kelly NH, Baad M, Fox AJS, Brophy RH, Warren RF, Maher SA. Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am Vol 2010; 92A(6): 1398–1408.
- 37Ghodbane SA, Dunn MG. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons. J Biomed Mater Res A 2016; 104(11): 2685–2692.
- 38Patel JM, Jackson RC, Schneider GL, Ghodbane SA, Dunn MG. Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges. J Mater Sci Mater Med 2018; 29(6): 75.
- 39Kakkar P, Verma S, Manjubala I, Madhan B. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering. Korean J Couns Psychother 2014; 45: 343–347.
- 40Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 1980; 102(1): 73–84.
- 41Rimmer MG, Nawana NS, Keene GC, Pearcy MJ. Failure strengths of different meniscal suturing techniques. Arthroscopy 1995; 11(2): 146–150.
- 42Von Lewinski G, Stukenborg-Colsman C, Ostermeier S, Hurschler C. Experimental measurement of tibiofemoral contact area in a meniscectomized ovine model using a resistive pressure measuring sensor. Ann Biomed Eng 2006; 34(10): 1607–1614.
- 43Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, Bonanzinga T, Nitri M, Raggi F, Ravazzolo G, Marcacci M. MRI evaluation of a collagen meniscus implant: A systematic review. Knee Surg Sports Traumatol Arthrosc 2015; 23(11): 3228–3237.
- 44De Groot J, Zijlstra F, Kuipers H, Pennings A, Klompmaker J, Veth R, Jansen H. Meniscal tissue regeneration in porous 50/50 copoly (L-lactide/ε-caprolactone) implants. Biomaterials 1997; 18(8): 613–622.
- 45Sandmann GH, Adamczyk C, Grande Garcia E, Doebele S, Buettner A, Milz S, Imhoff AB, Vogt S, Burgkart R, Tischer T. Biomechanical comparison of menisci from different species and artificial constructs. BMC Musculoskelet Disord 2013; 14: 324.
- 46Richards C, Gatt C, Langrana N, Calderon R. Quantitative measurement of human meniscal strain. Trans Orthop Res Soc 2003; 28: 649.
- 47Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med 1982; 10(2): 90–95.
- 48Chevrier A, Nelea M, Hurtig MB, Hoemann CD, Buschmann MD. Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res 2009; 27(9): 1197–1203.
- 49Beamer BS, Masoudi A, Walley KC, Harlow ER, Manoukian OS, Hertz B, Haeussler C, Olson JJ, Deangelis JP, Nazarian A, Ramappa AJ. Analysis of a new all-inside versus inside-out technique for repairing radial meniscal tears. Arthroscopy 2015; 31(2): 293–298.
- 50Kohn D, Siebert W. Meniscus suture techniques: A comparative biomechanical cadaver study. Arthroscopy 1989; 5(4): 324–327.
- 51Li S-T, Rodkey WG, Yuen D, Hansen P, Steadman JR. Type I collagen-based template for meniscus regeneration. Tissue Engineering and Biodegradable Equivalents. Scientific and Clinical Applications; New York: Marcel Dekker; 2002. pp. 237–266.
- 52Hardeman F, Corten K, Mylle M, Van Herck B, Verdonk R, Verdonk P, Bellemans J. What is the best way to fix a polyurethane meniscal scaffold? A biomechanical evaluation of different fixation modes. Knee Surg Sports Traumatol Arthrosc 2015; 23(1): 59–64.
- 53Cottrell JM, Scholten P, Wanich T, Warren RF, Wright TM, Maher SA. A new technique to measure the dynamic contact pressures on the Tibial plateau. J Biomech 2008; 41(10): 2324–2329.
- 54Verma NN, Kolb E, Cole BJ, Berkson MB, Garretson R, Farr J, Fregly B. The effects of medial meniscal transplantation techniques on intra-articular contact pressures. J Knee Surg 2008; 21(1): 20–26.
- 55Seitz AM, Lubomierski A, Friemert B, Ignatius A, Dürselen L. Effect of partial meniscectomy at the medial posterior horn on tibiofemoral contact mechanics and meniscal hoop strains in human knees. J Orthop Res 2012; 30(6): 934–942.
- 56Maher SA, Rodeo SA, Potter HG, Bonassar LJ, Wright TM, Warren RF. A pre-clinical test platform for the functional evaluation of scaffolds for musculoskeletal defects: The meniscus. HSS J 2011; 7(2): 157–163.
- 57Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: Prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 1998; 41(4): 687–693.
- 58Smith JP 3rd, Barrett GR. Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees. A prospective analysis of 575 tears. Am J Sports Med 2001; 29(4): 415–419.
- 59Brzezinski A, Ghodbane SA, Patel JM, Perry BA, Gatt CJ, Dunn MG. The ovine model for meniscus tissue engineering: Considerations of anatomy, function, implantation, and evaluation. Tissue Eng Part C Methods 2017; 23(12): 829–841.
- 60Ghodbane SA, Brzezinski A, Patel JM, Pfaff WA, Marzano KN, Gatt CJ, Dunn MG. Partial meniscus replacement with a collagen-hyaluronan infused 3D printed polymeric scaffold. Tissue Eng Part A 2018. https://doi.org/10.1089/ten.TEA.2018.0160